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ABSTRACT
Epidemiological and translational data increasingly 
implicate environmental pollutants in inflammatory 
bowel disease (IBD). Indeed, the global incidence of IBD 
has been rising, particularly in developing countries, in 
parallel with the increased use of chemicals and synthetic 
materials in daily life and escalating pollution levels. 
Recent nationwide and ecological studies have reported 
associations between agricultural pesticides and IBD, 
particularly Crohn’s disease. Exposure to other chemical 
categories has also been linked with an increased risk of 
IBD. To synthesise available data and identify knowledge 
gaps, we conducted a systematic review of human 
studies that reported on the impact of environmental 
pollutants on IBD risk and outcomes. Furthermore, 
we summarised in vitro data and animal studies 
investigating mechanisms underlying these associations. 
The 32 included human studies corroborate that heavy 
and transition metals, except zinc, air pollutants, per- and 
polyfluorinated substances, and pesticides are associated 
with an increased risk of IBD, with exposure to air 
pollutants being associated with disease-related adverse 
outcomes as well. The narrative review of preclinical 
studies suggests several overlapping mechanisms 
underlying these associations, including increased 
intestinal permeability, systemic inflammation and 
dysbiosis. A consolidated understanding of the impact of 
environmental exposures on IBD risk and outcomes is key 
to the identification of potentially modifiable risk factors 
and to inform strategies towards prediction, prevention 
and mitigation of IBD.

INTRODUCTION
Inflammatory bowel disease (IBD), encompassing 
Crohn’s disease (CD) and ulcerative colitis (UC), 
is a chronic immune-mediated disease primarily 
involving the gastrointestinal tract. IBD was first 
reported in Western countries in the late 18th to 
mid-19th centuries, coinciding with the Industrial 
Revolution and a major ecologic shift towards 
the modern environment. A similar pattern has 
been observed in developing and recently devel-
oped countries in Asia and Africa, where IBD has 
increased in incidence following modernisation 
and urbanisation in the 1990s–2000s.1 Globally, 
the estimated number of IBD cases increased from 
3.3 million in 1990 to 4.9 million in 2019, a rise 
of 47.5%,2 accounting for over $25 billion in 

annual direct healthcare costs in the USA.3 There-
fore, IBD is a global public health concern.2 While 
both genetic and non-genetic risk determinants are 
implicated, the aetiology of IBD remains inade-
quately elucidated, a roadblock to IBD prediction 
and prevention efforts. Genome-wide association 
studies have identified over 200 loci associated with 
IBD, but less than a third of cases are attributed to 
genetics alone, further supporting the role of the 
environment in IBD onset and outcomes.4 Uncov-
ering how environmental factors influence IBD 
onset and disease course could ultimately inform 
strategies towards mitigation of risk and disease 
progression.5 The imperative to delve into this topic 
is heightened considering the increasing levels of 
global pollution and environmental contaminants 
(eg, air pollutants and industrial chemicals) over the 
last decades, resulting from unregulated moderni-
sation and industrialisation.6 It is also relevant to 
acknowledge that changes in exposure patterns are 
associated with climate change and widening health 
disparities, pertinent concerns in the current era. 
In this systematic review, we summarise the avail-
able human studies on the impact of environmental 
pollutants on IBD risk and outcomes. Additionally, 
we compile available in vitro and animal studies 
data on underlying mechanisms and identify knowl-
edge gaps.

METHODS
Systematic review
We conducted this systematic review after regis-
tration in the International Prospective Register 
of Systematic Reviews (PROSPERO, registra-
tion number: CRD42024524629), following the 
Preferred Reporting Items for Systematic Reviews 
guidance for data extraction and reporting.7 Our 
research question was formulated using the ‘Popu-
lation, Intervention, Comparison and Outcome’ 
(PICO)8 methodology. The population of interest 
was healthy individuals at risk of developing IBD 
(prospective cohorts) or individuals with IBD 
(retrospective cohorts, genome-wide association 
studies or studies evaluating the impact of exposure 
on disease outcomes); the intervention or exposure 
of interest, was specific environmental pollutants; 
the comparator was individuals without IBD diag-
nosis/outcomes; and the endpoints were the devel-
opment of IBD or IBD-related outcomes.
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Literature search
Three online databases (MEDLINE, Web of Science and Scopus) 
were searched for studies addressing the PICO. The query used 
for PubMed was pollutants or pesticides or particulate matter 
(PM) or heavy metals or per- and polyfluoroalkyl substances 
(PFAS) or PM2.5 or PM10 AND inflammatory bowel disease or 
Crohn’s disease or ulcerative colitis or intestinal inflammation. 
The search included studies published in databases whose incep-
tion dates up to 29 April 2024. In addition, the references of 
articles identified as being relevant were reviewed for further 
published data matching the PICO question. Screening and 
selection of studies were done by two authors (MME and MA) 
using Rayyan, and discrepancies were resolved by a third arbi-
trator (VM).

Inclusion and exclusion criteria
Original research studies were included if they evaluated the 
impact of specific environmental pollutants, either in utero or 
throughout life, on healthy individuals at risk of developing IBD 
or on patients diagnosed with IBD, across all ages, in both urban 
and rural areas of developed and developing regions. Studies not 
meeting the inclusion criteria, as well as those focussing solely 
on diet or other exposures, reviews, case reports, guidelines or 
editorials, were excluded. No restrictions were imposed based 
on language. We excluded studies on exposure to plastics in this 
review due to the unique physical and chemical properties of 
these pollutants, challenges associated with their measurement 
and the limited available human data on plastic exposure and 
IBD at present.

Data extraction and quality assessment
The following information was extracted from the studies: cita-
tion details, characteristics of the study population, follow-up 
duration, details on the exposure, tools used to assess expo-
sure (eg, biomarkers, surveys), study outcomes (incidence/
prevalence of IBD, disease characteristics or outcomes), studied 
confounders and assessment of exposure-response (if available). 
The reporting quality of the studies was evaluated independently 
by two reviewers (MME and MA) using the Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE) 
criteria,9 considering 22 parameters for cohort and case-control 
studies. For ecological studies and genome-wide association 
studies, only the criteria relevant to those specific designs were 
evaluated.

Narrative review
We summarised data on the impact of pollutants on intestinal 
inflammation, relevant to IBD, from in vitro and animal model 
studies using a narrative approach. The studies included in the 
narrative review were gathered through a non-systematic search 
on PubMed. The search query used was ‘pollutants or pesticides 
or particulate matter (PM) or heavy metals or PFAS or PM2.5 
or PM10 AND ((in vitro) or (in vivo)) and (intestinal inflamma-
tion)’. References from clinical studies included in our system-
atic review and prior review papers on the subject were also 
considered.

RESULTS
Categories of pollutants: characteristics, sources and 
distribution
A pollutant is any chemical substance that appears in an 
organism or the environment at levels exceeding permis-
sible limits.10 These compounds are typically known for their 

widespread distribution, and, along with their byproducts, they 
can persist in and interact with the environment for extended 
periods. Pollutants can be categorised based on different param-
eters, for example, sources, physical and chemical properties and 
impact on environmental and human health.10 Considering the 
source, pollutants may be classified into (1) water pollutants (eg, 
chemicals, microbial contaminants, algal toxins, pharmaceuti-
cals and personal care products); (2) air pollutants (eg, indus-
trial and agricultural emissions, vehicle exhaust and smoking); 
(3) soil pollutants (eg, -cidal agents, heavy metals and industrial 
byproducts) and (4) others (comprising light, noise, radioac-
tive, thermal and microbial pollutants).11 Pollutants can also be 
grouped based on chemical composition (inorganic vs organic), 
boiling point (volatile or non-volatile) and ability to undergo 
biomagnification through the food chain based on their fat 
solubility.11 Highly persistent organic pollutants include PFAS, 
pesticides and polycyclic aromatic hydrocarbons (PAH), the 
former representing a highly persistent group of thousands of 
fluorinated compounds, ‘forever chemicals’, that are used exten-
sively in industries, in household and personal items, food and 
packaging.12 In this review, based on a composite13 of the above 
features as well as available data, chemical pollutants were classi-
fied into the following subtypes: (1) heavy and transition metals; 
(2) air pollutants, including PM (fine inhalable particles14 subdi-
vided according to their sizes in PM2.5, PM2.5–10 and PM10

13), 
gaseous molecules (nitrogen oxides—NOx, sulphur dioxide—
SO2, carbon monoxide—CO and ozone—O3), volatile organic 
compounds and greenhouse gases (carbon dioxide—CO2, 
methane—CH4, nitrous oxide—N2O and fluorinated gases); (3) 
industrial compounds and organic pollutants (including PFAS, 
PAH, solvents and flame retardants); (4) -cidal agents (pesticides, 
herbicides and insecticides).

Summary of literature search
The systematic search yielded 3743 results. Of these, 583 dupli-
cates were excluded, and 3128 records were eliminated based on 
inclusion and exclusion criteria (figure 1). We included 32 studies 
in the final qualitative systematic review. Study characteristics 
and main results are presented in online supplemental table 1 . 
Of these, 12 were case-control studies,12 14–24 seven were retro-
spective cohort analyses,25–31 four were ecological analyses,32–35 
four were cross-sectional,36–39 three were prospective cohort 
studies,40–42 and two were genome-wide association studies.43 44 
These studies pertained to the following categories of specific 
pollutants: heavy metals or transition metals (n=5),14–16 31 40 air 
pollutants (n=16),17–21 25–27 32–34 36 39 41 43 44 industrial compounds 
and organic pollutants (n=10)12 22–24 28–30 35 37 38 or pesticides 
(n=1).42. 25 studies reported on CD and UC risk, while five 
reported on UC alone15 17 29 36 44 and one on CD32 alone; the 
paediatric population was the focus of one study.27. Six studies 
analysed the impact of pollutants on disease course.25 32 34 36 39 41 
Online supplemental table 2 summarises the STROBE assess-
ment for all studies.

Impact of pollutants on IBD risk
In this section, we summarise the results of the human studies 
focussing on the impact (harmful, null or protective) of specific 
pollutants on IBD risk (figure 2).

Heavy metals or transition metals
It is important to acknowledge that while some metals are essen-
tial as nutrients (cobalt (Co), copper (Cu), chromium (Cr), iron 
(Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), 
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nickel (Ni), selenium (Se) and zinc (Zn)), others (arsenic (As), 
cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg)) are 
considered systemic toxicants and human carcinogens. Addition-
ally, all metals can be toxic at some level, depending on several 
factors, including the dose, route of exposure, chemical species 
and characteristics of the exposed individuals.

Five studies investigated the impact of metal exposure on IBD 
risk. The methods used to assess exposure were variable: two 
studies evaluated the quality of water consumed by the study 
population (at the region40 and district level,31 at or shortly 
after diagnosis), while others measured metals in colon biopsies, 

deciduous teeth16 and hair samples.14 Notably, only the last two 
matrices allowed for measuring metals at a high temporal reso-
lution, with the analysis of tooth dentine being the only one that 
generates temporal profiles of uptake during foetal growth.45 
The study on teeth16 evaluated exposures from the second 
trimester of pregnancy until 6 months after birth, while the hair14 
analyses using 3–4 cm of hair proximal to the scalp allowed for 
the assessment of exposure in adulthood, reflecting exposure 
up to 4 months before sampling. In all studies, individuals who 
developed IBD had higher concentrations of metals than healthy 
controls. An association between measured heavy metals and 

Figure 1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart of studies’ selection.
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IBD was reported in three studies.15 31 40 The specific profile of 
heavy metals varied across studies; Pb, Cu15 16 and Fe15 31 were 
associated with IBD risk in more than one study. Conversely, 
three studies 14 15 40 reported higher levels of Zn in individuals 
without IBD relative to those with IBD. The reporting quality 
of the studies was moderate-high for all studies, apart from one 
online supplemental table 2),15 which provided a less detailed 
description of the recruitment process and did not address 
bias or confounders. Also, most did not provide information 
regarding sample size calculation due to the exploratory nature 
of these studies.

Air pollutants
The impact of air pollution on the risk of IBD was estimated in 
10 studies17–21 26 27 33 43 44, of which two studies 17 44 focused on 
UC outcomes. The methodology for exposure assessment was 
variable: four used land use regression modelling,19 20 43 44, two 
used surveys18 32 and the remaining used geographic information 
systems (GIS) and satellite monitoring data. Four studies17 19 43 44 
reported that higher levels of PM2.5 were associated with UC 
risk, and one study26 reported an association with IBD overall. 
When limiting the analysis to paediatric-onset IBD, there was no 
impact of PM2.5 exposure.27 Conversely, in a nested case-control 
study20 with a smaller sample size, the opposite association was 

reported, with lower levels of PM2.5 in individuals with IBD 
compared with those without IBD (adjusted OR of 0.24 (95% CI 
0.07 to 0.81) per 5 lg/m3). One study19 reported a positive asso-
ciation between PM2.5–10 and PM10 and the risk of UC in a dose-
dependent manner. On the other hand, another study reported 
null findings.44

With respect to other air pollutants, based on GIS data, 
nitrogen oxides were reported to be significantly associated with 
the risk of UC in one study19 and CD in another.21 In another 
GIS-based analysis of air pollutants, oxidant levels during 
pregnancy and childhood were recognised as risk factors for 
paediatric-onset IBD, but null associations were reported for 
exposure to other gases.27 Regarding reporting quality, 4 of 
the 15 studies did not provide detailed information on recruit-
ment criteria, patients’ selection, data collection and analysis or 
management of confounders and sources of bias.17 25 33 39

Industrial compounds and organic pollutants
We identified 10 relevant studies in this subgroup, of which seven 
studied the impact of exposure to PFAS on IBD.12 22 23 28–30 38 In a 
nested case-control analysis12 of military recruits, higher concen-
trations of the PFAS mixture (consisting of nine PFAS chemicals) 
up to 10 years before IBD diagnosis were associated with an 
increased risk of both CD and UC in a dose-dependent manner. 

Figure 2  Summary of the main findings in each pollutant category. As, arsenic; CO, carbon monoxide; Cu, copper; CD, Crohn’s disease; IBD, 
inflammatory bowel disease; Fe, iron; Pb, lead; Hg, mercury; NO2, nitrogen dioxide; NOx, nitrogen oxides; OC, organochlorine; OP, organophosphate; 
Ox, oxidants, O3, ozone; PM, particulate matter; PFAS, per- and poly-fluoroalkyl substances; PAH, polycyclic aromatic hydrocarbons; Se, selenium; SO2, 
sulphur dioxide; UC, ulcerative colitis; Zn, zinc.
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In other studies focussing on specific legacy, PFAS identified asso-
ciations between individual PFAS chemicals (perfluorooctanoic 
acid (PFOA)23 28–30 and perfluorooctane sulfonate (PFOS)23) and 
the risk of UC, with a dose–response relationship reported in 
two of them.28 30 Conversely, in another report from the Nurses’ 
Health Study, inverse associations were identified between the 
levels of three legacy PFAS (PFOA, PFOS and perfluorodecanoic 
acid (PFDA)) and the risk of CD, while no association was found 
for UC.22 Of note, the median PFAS level in this cohort was 
lower than the national average. Two35 38 other analyses reported 
null associations between PFAS and IBD based on zip code-level 
exposure data.

Regarding other industrial contaminants, one case-control 
study24 identified a higher risk of UC in men exposed to 
silica dust in a time-dependent manner, while the risk of CD 
was higher in exposed women. Exposure to electronic waste 
(discarded electronic devices and equipment) enriched with 
polycyclic aromatic hydrocarbon compounds has been associ-
ated with systemic inflammatory changes in children (increased 
absolute lymphocyte and monocyte counts, lower serum levels 
of CD4+ T cells, increased B cells and sialyl Lewis A concen-
trations), although their impact on IBD as an outcome is not 
known.37 The reporting quality of the studies addressing indus-
trial and organic contaminants was adequate.

Pesticides
One study42 prospectively determined exposure to specific pesti-
cides among agricultural workers and families using question-
naires. Exposure to organochlorine (OC) and organophosphate 
(OP) insecticides was associated with elevated hazards of IBD, 
particularly dieldrin (adjusted HR (aHR) 1.59, 95% CI 1.03 to 
2.44), toxaphene (aHR 1.56, 95% CI 1.05 to 2.32) and terbufos 

(aHR 1.53, 95% CI 1.19 to 1.96), without a clear exposure-
response trend. The reporting quality was adequate.

Impact of pollutants on IBD-related outcomes
Data on the impact of specific pollutants on IBD-related 
outcomes is more limited. Six studies examined the impact of 
air pollutants on disease course (both CD and UC: n=4,25 34 39 41 
CD: n=1,32 UC: n=136). The studies that assessed IBD exacerba-
tions based on hospitalisation25 34 39 or outpatient visits36 found 
a positive association with air pollutant emissions. A dose–
response association was reported between total air pollutants 
and IBD-related hospitalisations35 and between daily outpatient 
visits for UC and PM2.5 concentrations.36 Exposure to PM2.5 and 
NOx was associated with an increased risk of enterectomy or 
all-cause mortality in a prospective analysis of over 4700 indi-
viduals with IBD.41 In this study, a concentration–response rela-
tionship was observed; patients exposed to each IQR increase 
in pollutants such as PM2.5, NOx, NO2 and PM10 experienced a 
10%–16% higher risk of enterotomy and all-cause mortality. An 
ecological study32 reported a higher CD-related mortality rate in 
zip codes with higher exposure to SO2; however, no association 
was found for PM2.5. CO was also reported to increase the risk of 
hospitalisations, particularly due to UC.25 39 On the other hand, 
the role of O3 is not clear.25 39

Association between pollutants and gut inflammation: data 
from in vitro and animal studies
Here, we summarise available data on mechanisms underlying 
the impact of different exposures on gut inflammation, based on 
in vitro data and animal studies (figure 3).

Figure 3  Proposed underlying mechanisms mediating IBD risk with exposure to environmental pollutants: a summary of in vitro data and in vivo 
animal studies. Al, aluminium; Ag, silver; As, arsenic; Cd, cadmium; Cr, chromium; Cu, copper; IL, interleukin; Pb, lead; MPO, myeloperoxidase; Ni, nickel; 
PM, particulate matter; PFAS, per- and polyfluoroalkyl substances; PFOS, perfluorooctane sulfonate; PFOA, perfluorooctanoic acid; PI3K-PKB/Akt, 
phosphoinositide-3-kinase-protein kinase B/Akt; ROS, reactive oxygen species; SCFA, short-chain fatty acids; TNF, tumour necrosis factor.
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Heavy metals or transition metals
Exposure to different metals (Al,46 Cd,47 Ni,48 Ag,49 Hg,50 
Pb,51 Cr52 and As53) was shown to induce a proinflammatory 
phenotype in intestinal epithelial cells (increased expression 
of interleukin (IL)-1β,53 54 IL-17α,53 IL-8,53 tumour necrosis 
factor(TNF)-α,47 54 IL-6,54 IL-4,54 IL-1049 and IL-1849). Also, 
exposure to metals like Al and Cd has been shown to impact 
cell death and renewal, increase gut permeability and exacer-
bate experimental colitis in mice.55 56 Other mechanisms have 
also been proposed, including reduced gut microbiota diversity, 
altered composition (eg, decreased abundance of Akkermansia 
with chronic exposure to Al, Cd, Cr, Cu and Pb52) and changes 
in metabolic function that may, in turn, affect the host’s immune 
and metabolic responses.51 In addition, exposure to Pb, Cu and 
Fe, for instance, may also directly induce inflammatory responses 
and cause oxidative stress.51 57 A recent exploratory pilot analysis 
examined the complex connection among metals, microbiome 
and intestinal inflammation. This analysis revealed that expo-
sure to certain metals during pregnancy, combined with specific 
bacterial types during childhood (termed metal-microbial 
cliques), correlated with elevated faecal calprotectin levels, a 
marker of subclinical inflammation.58 Conversely, Zn seems to 
have a protective role, improving the antioxidant and immune 
capacities and reducing apoptosis of intestinal epithelial cells in 
animal models.59 Recent reports suggest that exposure to Pb may 
secondarily induce changes in Cu, Fe and Zn levels,60 broad-
ening further the complexity and relevance of metal exposure.

Air pollutants
PM, specifically PM2.5 which has the highest penetration ability, 
is the most studied air pollutant. In mouse models, expo-
sure to PM2.5 alters circulating cytokine levels (decrease in 
Th17,61 increase in TNF-α,61 IL-1β62 and IL-662). Also, PM2.5 
is reported to impact the gut microbiome in several animal 
models, decreasing bacterial diversity and changing the firmic-
utes/bacteroidetes ratio63 and microbial metabolic pathways.62 
PM2.5 also promotes oxidant-dependent activation of the nuclear 
factor kappa B (NF-κB) pathway, with downstream disruption 
of tight junctions, and increases the permeability of human 
Caco-2 cell monolayers.63 However, two-dimensional models, 
like Caco-2 cells, may not accurately reflect the characteristics 
of native cells, particularly regarding the expression of recep-
tors and transporters. Using a three-dimensional model that 
incorporates stromal cells and extracellular matrix, Woodby 
et al64 have shown that chronic exposure to PM affects gut 
redox homeostasis and decreases the levels of cell–cell adhesion 
proteins (zonula occludens protein-1 and claudin-1). Moreover, 
other reports have demonstrated that PM can accelerate chem-
ically induced colonic tumour formation in murine models, a 
process that relies on the phosphoinositide 3-kinase (PI3K)/
AKT pathway.65 This finding may be relevant considering the 
increased risk of colorectal cancer in patients with IBD with 
active inflammation. Finally, PM10 was demonstrated to inter-
fere with calcium signalling, absorption and digestion pathways, 
exacerbating pre-existing intestinal inflammation in an organoid 
model.66

Industrial compounds, byproducts and organic pollutants
In mice studies, exposure to PFAS was associated with a decrease 
in firmicutes/bacteroidetes ratio, a decrease in Clostridiales, 
Enterobacteriale and Lactobacillales and a loss of gut barrier 
integrity due to a reduction in short-chain fatty acid produc-
tion and intestinal tight junction proteins (zonula occludens-1, 

occludin and claudin-1).67 Others have demonstrated increased 
expression of proinflammatory cytokines (particularly IL-6, 
TNF-α and IL-1β) and the expansion of systemic CD4+ T cells 
with PFOS.68 This compound was also reported to increase 
neutrophil recruitment to the intestine of zebrafish larvae, 
which was later validated in 2,4,6-trinitrobenzene sulfonic 
acid (TNBS)-induced colitis in mice.68 Studies conducted on 
bivalves using multiomics analyses suggested that the peroxi-
some proliferator-activated receptor-mediated lipid metabolism 
(Toll-like receptors/myeloid differentiation primary response 
88/NF-kB and PI3K-Akt-mTOR) and the autophagy pathways 
likely mediate PFOA-associated immunotoxicity.69 These path-
ways coordinate cellular responses to environmental stimuli, cell 
growth and proliferation, and immune regulation.69

Furthermore, evidence from human metabolomics suggests 
that PFAS exposure impacts important cellular metabolic path-
ways, including lipid, amino acid, carbohydrate/glycans, nucle-
otide, energy metabolism and glycan biosynthesis, which may 
suggest the effects of PFAS exposure on cellular energy and 
membrane disruption that can be potentially associated with 
pathological processes.70 Also, levels of PFOS and PFOA in 
human serum samples are associated with altered IgG glycosyla-
tion in both children and adults.71 Several glycosylation abnor-
malities have been described in IBD as, for example, defects in 
N-glycan branching of mucosal T cells from UC, leading to T-cell 
hyperactivation and increased disease severity.72 More recently, 
in a pilot analysis of the PFAS mixture in dried blood spots from 
neonates, an estimate of prenatal exposure, PFAS levels were 
associated with faecal calprotectin at 3 years of age, particularly 
in the offspring of women with IBD.73

Data regarding the mechanistic effects of other contaminants 
such as benzo[a]pyrene,74 polychlorinated biphenyls, ammonia75 
and triclocarban76 are few. However, in line with PFAS data, 
exposure to these chemicals increases the expression of IL-6, 
TNF-α and IL-1β and leads to altered intestinal permeability.

Pesticides
Recent preclinical evidence supports the impact of diverse pesti-
cides on the intestinal mucosa. Phosalone77 and chlorpyrifos,78 
OP pesticides, were reported to increase oxidative stress, TNF-α, 
IL-1β and IL-6 levels and to decrease intestinal permeability in 
mice. Similarly, exposure to avermectin and pyrethroid pesticides 
(fenpropathrin and deltamethrin) was found to increase oxida-
tive stress and inflammation and to compromise the integrity 
of the intestinal barrier in carp79 and mice.80 Recently, a study 
used an innovative approach combining publicly available data-
bases, zebrafish chemical screens, machine learning and mouse 
preclinical models to test for the effects of over 200 chemicals 
on intestinal inflammation.81 Of the 20 top candidate chemicals 
to induce intestinal inflammation, 11 were -cidal agents; two 
herbicides (flumetralin and propyzamide) and two pesticides 
(azinphos-methyl and phorate) boosted TNBS-induced intes-
tinal inflammation in zebrafish. Propyzamide was also found to 
induce colon shortening and intestinal inflammation (promoting 
TH1 and TH17 cell differentiation and increased expression of 
IL-17+ T cells) in mice.81

DISCUSSION
We systematically summarised 32 human studies on environ-
mental pollutants relevant to IBD risk and outcomes. Overall, 
these studies support an association between heavy and transi-
tion metals, air pollutants, industrial contaminants, insecticides 
and an increased risk of IBD. In contrast, Zn exposure may be 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

at G
u

id
o

 M
an

fred
i

 
o

n
 A

u
g

u
st 9, 2025

 
h

ttp
://g

u
t.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

23 A
u

g
u

st 2024. 
10.1136/g

u
tjn

l-2024-332523 o
n

 
G

u
t: first p

u
b

lish
ed

 as 

http://gut.bmj.com/


483Estevinho MM, et al. Gut 2025;74:477–486. doi:10.1136/gutjnl-2024-332523

Recent advances in basic science

protective against IBD. Limited data suggests that IBD outcomes, 
such as hospitalisations, are more prevalent with increased expo-
sure to air contaminants. Studies with comparable study designs 
will be important to clarify, as well as quantify, the impact of 
pollutants on IBD. Based on animal models and in vitro data, 
most of these pollutants promote intestinal inflammation 
through changes in the gut microbiome, loss of intestinal barrier 
function and systemic inflammation. Globally, the reporting 
quality of the studies was adequate.

Heavy and transition metals play vital roles in biological 
processes, including as enzyme cofactors and electron trans-
porters. Thus, any dyshomeostasis in these metals can disrupt 
metabolic and physiological functions. Both case-control14–16 
and cohort31 40 studies demonstrated associations between metals 
and IBD, with individuals exposed to elevated concentrations of 
Mn, Hg, As, Pb and Fe at a greater risk of IBD. These find-
ings are supported by evidence from a pilot study on deciduous 
teeth and an exploratory analysis of healthy children, the latter 
reporting an interaction between prenatal metal exposure and 
microbiome signatures towards downstream intestinal inflam-
mation.58 In line with this, preclinical studies have shown both 
direct and microbiome-related effects of metals on the micro-
bial metabolic profile, intestinal permeability, cytokine milieu 
and systemic immune dysregulation.82 In contrast, Zn appears 
to decrease the risk of IBD.15 This has biological plausibility 
considering Zn’s anti-inflammatory and antioxidant effects 
in animal studies.59 Furthermore, this is corroborated by two 
large prospective cohort studies in which an inverse relationship 
between dietary Zn intake and the risk of CD was detected. Yet, 
no such association was observed for UC.83

With respect to air pollutants, which may be inhaled or 
ingested, five of the seven reports19 37 41 42 that investigated 
the effect of PM2.5

19 37 41 42 reported a harmful association with 
IBD, particularly with UC.43 44 This association is supported by 
the proinflammatory effects of PM2.5 in the intestinal tract in 
in vitro and animal studies. The association of PM2.5 with UC 

but not with CD, highlighted in some studies, may be related to 
perturbation of colonic microbiota composition by air pollut-
ants and warrants further study. Other air pollutants, such as 
total oxidant agents,27 NO21 and SO2,

21 may be particularly 
relevant in early life.84 Indirect data also supports this frame-
work. In a population-based cohort study, early-life exposure 
to agricultural land use was associated with increased CD risk, 
while exposure to greenspace and biodiversity was protective.85 
These exposures may modulate NO and SO2 levels, mainly from 
vegetable crops, fertilisers or livestock. Certainly, exposures 
during the early life period, which extends from the prenatal 
period to early childhood, are critical to microbiome establish-
ment, immune maturation and the risk of IBD later in life.85–88 
Exposures in adulthood may be relevant to older-onset IBD.89 
Studies exploring the effects of pollutants at different stages of 
life are likely to be relevant, particularly towards honing predic-
tion and prevention strategies. The impact of air pollutants on 
adverse IBD outcomes such as hospitalisation,25 34 39 surgery41 
and mortality32 are consistent with those pertaining to other 
immune-mediated diseases, such as rheumatoid arthritis90 and 
emphasise the importance of mitigation strategies.

The importance of industrial contaminants has increased, not 
only because their sources are proliferating but also because 
some have long-lasting persistence, rising over time.12 Among 
these, the most relevant are PFAS, a family of over 8000 
synthetic chemicals widespread in the environment. The adverse 
effects of PFOS and PFOA on gut homeostasis are consistently 
reported in animal and in vitro studies, as well as in recent anal-
yses of human serum samples and neonatal dried blood spots. 
This knowledge and the PFAS association with a broad range of 
conditions,91 including cancer and immunotoxicity, have been 
recognised by European and American agencies and authori-
ties.91 However, not all epidemiological studies reported an asso-
ciation between PFAS levels and IBD risk. This highlights the 
importance of studying PFAS (and other pollutants) in totality, 
such as a mixture, rather than measuring individual compounds, 

Figure 4  Main findings of the review.IBD, inflammatory bowel disease; PFAS, per- and polyfluoroalkyl substances.
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such as legacy PFAS.12 Furthermore, delineating the impact of 
PFAS on gut mucosal integrity and permeability by assessing 
its effects on mucosal glycocalyx composition and microbiota 
functions is relevant. This approach can provide insights into the 
underlying causes of the transition from health to inflammation 
associated with the onset of IBD.

With respect to pesticides, their detrimental impact on intes-
tinal mucosa has been reported in numerous in vitro and animal 
studies. However, only one clinical study explored the role of 
pesticides in modulating the risk of IBD. Although this prospec-
tive study found a positive association with OC and OP insecti-
cides, the exposure was measured using questionnaires, making 
it subjective and prone to recall bias.42 While more objective 
exposure assessments are needed, two recent population-based 
studies85 92 indirectly support the role of pesticides as risk factors. 
The first, from the Danish population, identified that early life 
exposure to agricultural land use was linked to a higher risk of 
CD.85 The second, which evaluated French farmers, identified 
some agricultural activities in which pesticides are commonly 
applied, like fruit arboriculture and crop farming, to be more 
strongly associated with IBD risk.92

While reporting important findings for specific pollutants, 
this review also highlights knowledge gaps (figure 4). Regarding 
metals, these include the limited number of human studies with 
relatively small sample sizes and the absence of individual-level 
and long-term assessments of exposures in many cases. Further, 
there are few tools available to establish concentration–effect 
relationships. Future work is also needed to understand the inter-
active effects of multiple metals or metal mixtures and to unravel 
the dysregulation in foetal metal biodynamics (eg, altered rhyth-
micity, a biomarker of metal homeostasis and a concept different 
from exposure).93 The complex relationship between metals and 
the gut microbiome is also just beginning to be understood. Even 
though the existing evidence for air pollutants is robust, there is a 
need for more comprehensive exposure assessments, accounting 
for the dynamics introduced by environmental policies and 
understanding how exogenous exposure to air pollutants exac-
erbates the effect of endogenous pollutants like pesticides and 
PFAS. Concerning industrial products, although several clinical 
studies address PFAS, using advanced laboratory techniques and 
statistical models is crucial to detecting meaningful immunolog-
ical effects and conducting valid risk assessments. Regarding in 
vitro and in vivo animal studies, little evidence exists for other 
PFAS compounds other than PFOS and PFOA. The impact of 
relevant industrial contaminants like hydrogen sulphide, triclo-
carban, ammonia and flame retardants on gut inflammation 
remains to be explored. Regarding -cidal agents, it remains diffi-
cult to evaluate past and time-varying exposures, dose-effect 
measures, and the role of unexplored vectors such as soil. There 
is a paucity of data for other agents, such as pharmaceutical 
products and endocrine disruptors.

Overall, the measurement of exposure biomarkers with high 
temporal resolution, particularly in preclinical biological samples 
and the application of advanced measurement techniques and 
composite data analysis are needed to clearly delineate the impact 
of environmental pollutants on IBD. This approach may also 
provide insights into the role of different environmental insults 
in different stages of life and clarify whether the timing of expo-
sure may be more critical than the duration. Mechanistic data 
using IBD models, rather than extrapolation from other models, 
will provide granular insights into IBD pathogenesis. Finally, it 
is important to note that variables beyond environmental pollut-
ants, such as genetic, epigenetic and dietary factors, are likely 
to modulate IBD risk and outcomes via direct and interaction 

effects, highlighting the complexity of IBD pathogenesis. For 
example, the effect of smoking on health outcomes is modulated 
by genetic variants that influence its metabolism.94 95 Future 
multiomic analyses will uncover gene–pollutant interactions in 
the context of IBD.

Finally, it is key to advance and upscale the field of biore-
mediation, identifying microorganisms, enzymes and inert 
compounds that may help eliminate or, at least, neutralise pollut-
ants. These transdisciplinary approaches will provide evidence 
towards effective prevention strategies in regulatory and clinical 
contexts, as well as provide a framework towards understanding 
environmental impacts on other immune-mediated diseases. 
In the meantime, based on current knowledge and in line with 
international recommendations, it is crucial to minimise harmful 
exposures through modification of production processes, use 
of less toxic materials, implementation of conservation tech-
niques, reuse and upcycling. Such practices, at individual and 
societal levels, are likely to be relevant towards improving health 
outcomes overall.
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Supplementary Table 1. Summary of  the evidence from human studies on the association between inflammatory bowel disease and the different categories of 

environmental pollutants.

HEAVY METALS OR TRANSITION METALS

Citation details Study type
Study 

population/unit
Follow-up Exposure details

Tools used to 

assess exposure

Outcomes 

assessed

Confounders 

measured

Exposure 

response
Results

Rodríguez-Lago et 

al., 202415

Case-control 

study

Incident cases 

of preclinical 

IBD (UC n=3, 

CD n=3) or 

healthy controls 

(n=13)

No

Al, Sb, As, Ba, Be, 

Bi, Cd, Pb, Hg, Pt, Tl, 

Th, U, Ni, Ag, Sn) 

and minerals (Ca, 

Mg, Na, K, Cu, Zn, 

Mn, Cr, V, Mo, B, I, 

Li, P, Se, Sr, S, Co, 

Fe, Ge, Rb, Zr

Hair samples

Concentration

s in IBD 

versus healthy 

controls

None None

Significantly higher levels of Na, K, and B among 

cases compared to controls, while lower levels of 

Zn, U, Cu, and Ge were observed.

Zhou et al., 202341
Prospective 

cohort study

Incident cases 

of IBD (n=46), 

overall cohort 

n=22,824 

5 years 

(mean)

Hg, Fe, Mn, Cu, Al, 

Zn, Cr, Cd, Se, F, 

SO4, Cl, and 

disinfectants

Drinking water 

quality

(region level)

Hazard ratio 

for IBD

Age, sex, 

education, BMI, 

income, smoking, 

alcohol and tea 

consumption, diet

Concentrati

on-

response 

relationship

Elevated levels of Mn, Hg, Se, SO4, Cl, and 

NO3_N were associated with a greater risk of 

IBD, with aHR ranging from 1.26 (95%CI 1.18-

1.34) to 1.66 (95%CI 1.32–2.09). On the other 

hand, Zn and F were connected to a lower risk of 

IBD.

Bagherzadeh et al., 

202116

Case-control 

study

Patients with 

UC (n=35), 

healthy controls 

(n=35)

No
Pb, As, Ni, Cu, Zn, 

Fe, and Se

Colon biopsy 

samples, drinking 

water (individual 

level)

OR for UC, 

concentrations 

of metals

None None

Exposure to Pb (OR 1.02, p=0.001), As (OR 1.51, 

p<0.001), Cu (OR 1.011, p=0.021), and Fe (OR 

1.02, p=0.001) was associated with occurrence of 

UC; the concentrations of Zn and Ni were lower in 

UC patients than in controls.

Nair et al., 202017
Case-control 

study

Patients with 

IBD (n=12; 7 

with CD, 5 with 

UC) and 

controls (n=16)

No Pb, Cu, Zn, and Cr

Deciduous teeth of 

patients who 

developed IBD

Heavy metal 

uptake in baby 

teeth

Sex None

Significant differences in Pb, Cu, Zn, and Cr 

uptake in the baby teeth of individuals who 

developed IBD, in a time-dependent manner.

Aamodt et al., 

200832

Retrospectiv

e cohort 

study 

(population-

based data)

762 IBD 

patients (CD 

n=185, UC 

n=435, not 

classified 

n=142)

5 years

Fe, Al, acidity, color, 

turbidity, and coliform 

bacteria

Drinking water 

quality (district 

level)

Relative risk of 

IBD

Urbanization, age 

at diagnosis, 

gender

None

The aRR of IBD increased by 17% when the Fe 

content in the water increased by 0.1 mg/L (UC 

and CD); no association for other factors.

AIR POLLUTANTS

Citation details Study type
Study 

population/unit
Follow-up Exposure details

Tools used to 

assess exposure

Outcomes 

assessed

Confounders 

measured

Exposure 

response
Results

Fu et al., 202445

Genome-

wide 

association 

study

2,251 UC 

patients, 

210,300 

controls

No Air pollution

SNP associated 

with PM2.5, PM2.5-10, 

PM10 (LUR models)

Incidence of 

UC

Mendelian 

randomization 
None

A positive association was identified between 

PM2.5 levels and the risk of UC (OR 3.6, 95%CI 

1.2-11.3, p=0.026); however, no causal link was 

found between PM2.5-10 and PM10 levels and UC.

Wen et al., 202444 Genome-

wide 

association 

6,968 UC 

cases, 5,956 

CD cases, 

No Air pollution SNP associated 

with PM10, PM2.5, 

NO2, and NOX 

Incidence of 

UC and CD

Mendelian 

randomization, 

(BMI, alcohol, 

None The association between PM2.5 and increased risk 

for UC (aOR 2.50, 95%CI 1.27-4.91, p=0.008) 

was the only significant result after accounting for 
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study 21,770 controls
(LUR models, 

region level)

smoking, income, 

air pollutants) 
other air pollutants.

Chen et al., 202342
Prospective 

cohort study

4,708 

individuals with 

IBD (CD n= 

1,485, UC 

n=3,233)

12 years 

(mean)
Air pollution

Annual average 

concentrations of 

PM2.5, PM2.5-10, 

PM10, NO2 and NOx 

(LUR model)

Clinical 

outcomes in 

IBD patients 

(enterotomy, 

gastrointestina

l cancer, and 

all-cause 

mortality)

Age, sex, 

ethnicity, income, 

smoking, 

education, BMI, 

physical activity, 

diet, alcohol 

consumption, 

medication

Association 

between 

increased 

exposure 

and 

outcomes

Increase in exposure to PM2.5 by one IQR 

associated to increased risk of enterotomy 

(aHR=1.16, 95%CI 1.00-1.34, p=0.043). Each 

IQR increase in exposure to NOx (aHR=1.10, 

95%CI 1.01-1.20, p=0.016), NO2 (aHR=1.16, 

95%CI 1.03-1.29, p=0.010), PM10 (aHR=1.15; 

95%CI 1.03-1.30, p=0.015), and PM2.5 

(aHR=1.14, 95%CI 1.02-1.28, p=0.019) was 

associated with a higher risk of all-cause 

mortality.

Feathers et al., 

202333

Ecological 

analysis

378 individuals 

who died 

because of CD-

related causes

No Air pollution

Exposure to NO, 

NO2, SO2, O3, and 

PM2.5 (survey, zip 

code-level)

CD-related 

death

Economic status, 

ethnicity
None

Greater risk of CD-related death observed in zip 

codes with higher SO2 levels (aIRR=1.16, 95%CI 

1.06-1.27); however, the risk was not linked to the 

levels of NO, NO2, or fine particulate matter.

Dorofeyev et al., 

202318

Case-control 

study

100 patients 

with UC from 

highly (HPRs) 

and low PM2.5-

polluted regions

No
High versus low air 

pollution (PM2.5)

Exposure to PM2.5 

(region level)

Morphological 

and functional 

changes in 

mucosa and 

microbiome

None None

Patients from HPRs presented significant 

changes in mucus; the level of MUC2 was 

significantly lower patients with UC from HPRs. In 

patients with UC from HPRs, a decrease in 

Bacteroidetes and an increase in Proteobacteria 

was identified.

Riahi et al., 202319
Case-control 

study

IBD patients 

(n=100) and 

sex-matched 

controls (n=100)

No
Air and water 

pollution
Survey OR for IBD None None

Individuals exposed to pollutants (yes/no) did not 

have higher odds of developing IBD (OR 1.17, 

95%CI 0.62-2.21 for air pollution, OR 0.32, 

95%CI 0.06-1.62 for water pollution)

Ding et al., 202226

Retrospectiv

e cohort 

study

Patients with 

UC (n=313) and 

CD (n=573) with 

IBD-related 

admissions

No Air pollution

PM10, PM2.5, O3, 

CO, NO2, SO2 

concentrations 

(region level)

Risk of IBD-

related daily 

hospital 

admissions

Meteorological 

factors
None

PM2.5, O3, and CO exposure significantly 

increased the risk of daily admissions for IBD, 

mainly in warm seasons and for UC patients.

Li et al., 202220

Nested case-

control study 

(population-

based 

cohort)

Incident cases 

of UC (n=1,872) 

and CD 

(n=865), healthy 

controls 

(n=452,628)

11.7 year 

(median)

Air pollution and 

residential exposure

PM2.5, PM2.5-10, 

PM10, NO2 and NOx 

(LUR model)

Incidence of 

IBD

Age, sex, 

ethnicity, income, 

BMI, smoking, 

diet, alcohol, 

sedentary time, 

aspirin use, other 

diseases

Exposure 

over time

aHRs of UC associated with each one IQR 

increase in PM2.5, PM2.5-10, PM10, NO2, and NOx 

were 1.06 (95%CI 1.01-1.12), 1.03 (0.99-1.08), 

1.09 (1.03-1.16), 1.12 (1.07-1.19), and 1.07 (1.02-

1.12), respectively. The associations between air 

pollutants and the risk of CD were null.

Adami et al., 202227

Retrospectiv

e cohort 

study 

(population-

based data)

1,250 

individuals with 

IBD, overall 

cohort 

N=81,363

No Air pollution

PM10 and PM2.5 

concentrations 

(region level)

Prevalence of 

IBD

Scholarity, 

climate, 

socioeconomic 

status, smoking

None

Exposure to PM2.5 was associated with an 

increased risk of IBD (aOR 1.21, 95%CI 1.03-

1.42); exposure to PM10 did not significantly 

increase the risk.

Mauriz-Barreiro et 

al., 202134

Ecological 

analysis

Incident cases 

of IBD (UC 

n=63, CD n=29, 

unclassified 

NR Residential radon 

concentration

Radon 

concentration 

(municipal level)

Incidence of 

IBD

Sex None No correlation between radon levels and the 

cumulative incidence of IBD (Spearman’s rho = 

0.13, p-value 0.50).
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n=4)

Duan et al., 202137

Cross-

sectional 

study

Outpatient visits 

for UC (n= 

84,000)

No

Short-term exposure 

to fine particulate 

matter (PM2.5)

Daily PM2.5 

concentrations 

(region level)

UC-related 

outpatient 

visits

Meteorological 

factors, day of the 

week, calendar 

time

Concentrati

on-

response 

relationship

A 10 μg/m3 increase in PM2.5 concentration 

corresponded to a 0.32% increase in UC 

outpatient visits (95% CI, 0.05–0.58%; p=0.019) 

on that day; a concentration-response association 

was identified.

Elten et al., 202028

Retrospectiv

e cohort 

study 

(population-

based)

Incident cases 

of IBD (CD 

n=1,375, UC 

n=899, 

unclassified 

n=218); non-

IBD 

(n=2,218,789)

12 years 

(mean)

Maternal and early-

life exposures

NO2, PM2.5, O3 and 

Ox - weekly in 

pregnancy, annual 

up to 18 years-old 

(zip-code level)

Hazard ratio 

for pediatric-

onset IBD

Sex, rurality of 

residence, 

maternal IBD, 

neighborhood 

income

None

Significant positive associations for second-

trimester exposure to Ox (HR 1.21, 95%CI 1.03-

1.42) and childhood exposure to Ox (HR 1.08, 

95%CI 1.01-1.16); slightly more for UC. First-

trimester exposure to NO2 was associated with an 

increased risk of IBD only among those living in 

rural areas.

Opstelten et al., 

201621

Nested case-

control study

Incident cases 

of CD (n=38), 

UC (n=104) and 

controls (n=568)

At least 5 

years

Air pollution and 

residential exposure

Air pollution 

(region level), 

residential 

exposure (LUR for 

PM10, PM2.5, 

PMcoarse, NOx)

OR for IBD

Age, gender, diet, 

smoking, physical 

activity, 

educational level

None

Individuals with IBD were less likely to have 

higher exposure levels of PM2.5 and PM10, with 

aOR of 0.24 (95%CI 0.07-0.81) per 5 lg/m3 and 

0.25 (95%CI 0.08-0.78) per 10 lg/m3. A higher 

traffic load was positively associated with UC 

(aOR 1.58, 95%CI 1.00-2.49).

Nejad et al., 201640

Cross-

sectional 

study

IBD inpatients 

(UC n=37, CD 

n=29)

10 months Air pollution

Average 

concentration of 

SO2, CO, NO2 and 

O3 (region level)

Number and 

average 

duration of 

IBD-related 

hospitalization

s

None None

Non-significant positive association between CO 

levels and the number and duration of admissions 

due to UC (p=0.13 and p=0.08, correlation 

coefficients of 0.196 and 0.251, respectively). 

There was an inverse correlation between 

concentration of O3 and number and duration of 

admissions due to CD flare (p=0.016 and 0.006, 

correlation coefficient -0.338 and -0.413, 

respectively).

Kaplan et al., 201022
Nested case-

control study

Incident cases 

of CD (n=367) 

or UC (n=591) 

and age- and 

sex-matched 

controls

No
Residential exposure 

to air pollution

Quintiles of 

concentration of 

NO2, SO2, and 

PM10 (region level)

OR for IBD

Smoking, 

socioeconomic 

status, NSAIDs, 

appendectomy

Concentrati

on-

response 

relationship

Individuals ≤23 years were more likely to be 

diagnosed with CD if they lived in regions with 

NO2 concentrations within the upper three 

quintiles (aOR=2.31, 95%CI 1.25-4.28). UC 

patients ≤25 years (OR=2.00, 95%CI 1.08-3.72) 

were more likely to live in regions of higher SO2 

(no dose response effect).

Ananthakrishnan et 

al., 201135

Ecological 

analysis

IBD inpatients 

(UC n=1,353, 

CD n=2,537)

NR Air pollution

Densities of 

volatile organic 

compounds, CO, 

NO, SO2 and PM2.5 

(region level)

IBD-related 

hospitalization

s

Farmland area, 

socioeconomic 

status, 

urbanization, 

household size

Concentrati

on-

response 

relationship

Total pollutant emissions correlated significantly 

with IBD hospitalizations (Pearson’s rho 0.28, 

p=0.02). The iRR was also significant for 

individual pollutants (CO, NO, SO2, and PM2.5), 

ranging from 1.03, 95%CI 1.01-1.05 (for CO) to 

1.52, 95%CI1.41–1.63 (volatile compounds)

INDUSTRIAL COMPOUNDS AND ORGANIC POLLUTANTS

Citation details Study type
Study 

population/unit
Follow-up Exposure details

Tools used to 

assess exposure

Outcomes 

assessed

Confounders 

measured

Exposure 

response
Results

Agrawal et al., 

202312

Nested case-

control study

Individuals with 

CD (n=25), UC 

6-10 years 

prior 

Exposure to 

perfluoroalkyl 

Serum 

concentrations 

OR for IBD Age at diagnosis, 

different batches 

Assessmen

t at multiple 

A higher concentration of fluorinated compounds, 

including PFAS, was linked to an increased risk of 
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(n=25), age-, 

sex, and race- 

matched 

controls (n=25)

diagnosis substances

(pre-diagnostic) of 

a mixture of nine 

PFAS (comprising 

PFOA, PFOS, 

PFNA, PFDA, 

PFHxS, among 

others) 

of chemical 

exposure analysis
time points

IBD. For each one-unit increase, the aOR was 

2.13 (95%CI 1.33–3.41) for CD and 1.76 (95%CI 

1.15-2.68) for UC. This pattern was consistent 

across four different time points, up to 10 years 

before diagnosis.

Lochhead et al., 

202223

Nested case-

control study

Incident cases 

of CD (n = 73), 

UC (n = 80) and 

matched 

controls

No

Exposure to 

perfluoroalkyl 

substances

Serum 

concentrations of 

PFAS (PFOA, 

PFHxS, PFNA, 

PFDA, total PFOS)

Incidence of 

IBD

Age, hormone 

status, BMI, 

smoking, parity, 

physical activity, 

diet, housing

Concentrati

on-

response 

relationship

Inverse associations between plasma 

concentrations of three PFAS (PFOA, PFOS, and 

PFDA) and risk of CD (p≤0.012 for a standard 

deviation increase in log10PFAS). No correlation 

with the risk of UC.

Okafor et al., 202236
Ecological 

analysis

Patients with 

UC (n=9,797) 

and CD 

(n=5,734), 

overall cohort 

n=2,885,171

NR

Exposure to several 

environmental 

pollutants

O3, PM2.5 diesel, 

drinking water 

contaminants, 

pesticides, toxic 

releases from 

industrial facilities, 

traffic (zip-code 

level)

Incidence of 

IBD (zip-code 

level)

Gender, race, 

ethnicity, age, 

income, work and 

insurance, 

education, 

housing, food

None
No significant associations were noted between 

pollutants and IBD.

Chen et al., 202138

Cross-

sectional 

study

Healthy children 

exposed 

(n=119) and 

non-exposed 

(n=113) to 

waste polycyclic 

aromatic 

hydrocarbon 

(PAH)

No
Exposure to PAH 

from electronic waste

Measurement of 

eleven urinary 

PAH metabolites

B lymphocyte 

phenotype 

(serum), 

intestinal 

mucosal 

immunity, 

diarrhea

Dwelling 

environment, 

children’s living 

habits, family 

history, income, 

parental 

educational level

None

E-waste-exposed children had higher OH-PAH 

concentrations, along with elevated sialyl Lewis A 

levels, increased counts of lymphocytes and 

monocytes, a decreased percentage of CD4+ T 

cells in the serum, and an elevated risk of 

diarrhea (OR = 2.21). PAHs affected the intestinal 

epithelium and led to M cell transformation.

Fart et al., 202124
Case-control 

study

Patients with 

UC (n=20) and 

CD (n=20) 

diagnosed after 

55 years-old 

and age- and 

sex-matched 

controls

No

Exposure to 

perfluoroalkyl 

substances

Perfluoroalkyl 

substances 

(PFHpA, PFHxS, 

PFOA, PFNA, 

PFOS, PFDA, 

PFUnDA, PFTrDA, 

total PFAS)

Serum 

concentrations 

in CD and UC 

versus healthy 

controls

Disease location None

Serum PFAS levels, particularly PFOS and 

PFOA, are significantly increased in patients with 

UC compared to healthy controls and patients 

with CD (p<0.05).

Xu et al, 202039

Cross-

sectional 

study

1,284 patients 

with IBD, 63,074 

(overall cohort) 

from a highly 

exposed 

population

No

Exposure to 

perfluoroalkyl 

substances in a 

highly exposed 

population

Yearly exposure to 

contaminated 

drinking water (zip-

code level)

Hazard ratio 

for IBD, 

concentrations 

of fecal 

zonulin and 

calprotectin

Educational level

Association 

between 

PFAS 

exposure 

and fecal 

zonulin and 

calprotectin

Participants exposed to risk factors in the early 

period had an increased risk for CD (HRs of 1.58, 

p=0.048); no elevated HR was observed for mid 

or late-period exposures. The exposed group had 

higher median fecal calprotectin levels (99.6 

versus 66.8 mg/kg, p=0.04). However, higher 

serum PFAS concentrations were associated with 

lower calprotectin levels.

Wallden et al., 

202025

Nested case-

control study 

IBD patients 

(UC n=19,830, 

No Occupational 

exposure to silica 

Silica exposure 

(job exposure 

Incidence of 

IBD

Duration of 

exposure, sex

Risk as a 

function of 

The prevalence of UC was significantly higher in 

men exposed to silica dust (OR 1.13, 95%CI 
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(population-

based data)

CD n=10,261) 

and 60,182 

controls 

matched for 

age, sex and 

county

dust matrix)

the 

duration of 

exposure

1.06-1.21), particularly in individuals with over 5 

years exposure. The prevalence of CD was 

significantly increased among exposed women 

(OR 1.29, 95%CI 1.01-1.65).

Steenland et al., 

201829

Retrospectiv

e cohort 

study

Patients with 

UC (n=114), CD 

(n=60) or 

controls (n=75)

No

Exposure to 

perfluoroalkyl 

substances

Serum levels of 

PFOA, PFOS, 

PFHxS, PFNA

Serum 

concentrations 

in CD and UC 

versus 

controls

Age, gender, 

race, year of 

sample

Adjusted 

RR per 

quartile 

levels

The average level of PFOA was 38% higher in 

UC patients (p=0.01) than in CD patients and 

controls. In contrast, the three other PFASs were 

significantly higher in controls and CD patients. 

The OR for UC per one unit of log PFOA was 

1.60 (95%CI 1.14-2.24). The RR for UC by 

quartiles of cumulative PFOA exposure were 

1.00, 1.76, 2.73, and 2.86 (significant linear trend, 

p<0.01).

Steenland et al., 

201530

Retrospectiv

e cohort 

study

3,713 

individuals 

working in the 

DuPont plant

NR PFOA exposure

PFOA serum 

levels (job-

exposure matrix); 

non-occupational 

exposure 

(questionnaire)

Incidence of 

UC

Gender, race, 

education, BMI 

smoking and 

alcohol 

None

UC (10-year lag) showed a significant trend 

(p≤0.05) with increasing dose of exposure, with 

RR across quartiles of 1.00, 3.00, 3.26, and 6.5 

(p=0.05).

Steenland et al., 

201331

Retrospectiv

e cohort 

study (highly 

exposed 

population); 

prospective 

analysis

Incident cases 

of CD (n=96), 

UC (n=151); 

overall cohort 

n=32,254

29 years 

(median)
PFOA exposure

PFOA exposure 

(estimated serum 

levels based on 

DuPont emissions, 

residential, work 

history)

Incidence of 

IBD

Age, sex, 

ethnicity, 

smoking, BMI, 

alcohol 

consumption

Concentrati

on-

response 

relationship

The incidence of UC was significantly increased 

with PFOA exposure (aRR 1.76, 95%CI 1.04-2.99 

[Q2*Q1]; 2.63, 95%CI 1.56-4.43 [Q3*Q1] and 

2.86, 95%CI 1.65-4.96 [Q4*Q1]) in the 

retrospective study. A prospective analysis of UC 

diagnosed after the baseline survey (n=29) 

suggested a positive non-monotonic trend 

(p=0.21).

PESTICIDES

Citation details Study type
Study 

population/unit
Follow-up Exposure details

Tools used to 

assess exposure

Outcomes 

assessed

Confounders 

measured

Exposure 

response
Results

Chen et al., 202443
Prospective 

cohort study

IBD patients 

(n=454) among 

private pesticide 

applicators and 

their spouses 

(n=68,480)

18 years 

(median)

Exposure to 

pesticides

Questionnaire (at 

baseline and 

follow-up on the 

use of 50 specific 

pesticides)

Hazard ratio 

for IBD

Age, sex, race, 

ethnicity, 

education, state of 

residence, 

smoking, contact 

with animals

Intensity-

weighted 

lifetime 

pesticide 

use

Among OC insecticides, dieldrin had an aHR of 

1.59 (95%CI 1.03-2.44), DDT had an aHR of 1.47 

(95%CI 1.03-2.08), and toxaphene had an aHR of 

1.56 (95% CI 1.05-2.32). Among OP insecticides, 

phorate had an aHR of 1.39 (95%CI 1.00-1.92), 

and terbufos of 1.53 (95%CI 1.19-1.96). 

Herbicides with significant aHRs included alachlor 

(1.39, 95% CI 1.02-1.91), metolachlor (1.55, 95% 

CI 1.13-2.12), 2,4,5-T (1.43, 95% CI 1.00-2.03), 

and atrazine (1.46, 95% CI 1.00-2.13); no clear 

exposure-response trend.

Adjusted odds ratio (aOR), adjusted rate ratio (aRR), aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), body mass index (BMI), boron (B), cadmium (Cd), calcium (Ca), chlorine (Cl), 

chromium (Cr), cobalt (Co), copper (Cu), Crohn’s disease (CD), fluorine (F), germanium (Ge), incidence rate ratio (IRR), interquartile range (IQR), iodine (I), iron (Fe), land use regression (LUR), lead (Pb), lithium (Li), 

magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), nitrate nitrogen (NO3-N), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), odds ratio (OR), organochlorine (OC), 
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organophosphates (OP), ozone (O3), particulate matter with a diameter between 2.5 and 10 micrometers (PM2.5-10), particulate matter with 10 micrometers or less (PM10), particulate matter with 2.5 micrometers or less 

(PM2.5), per- and polyfluoroalkyl substances (PFAS), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctane sulfonate 

(PFOS), perfluorooctanoic acid (PFOA), perfluorotridecanoic acid (PFTrDA), perfluoroundecanoic acid (PFUnDA), phosphorus (P), platinum (Pt), potassium (K), rubidium (Rb), selenium (Se), silver (Ag), single 

nucleotide polymorphisms (SNP), sodium (Na), strontium (Sr), sulfur (S), sulfur dioxide (SO2), sulfur tetraoxide (SO4), thallium (Tl), thorium (Th), tin (Sn), titanium (Ti), ulcerative colitis (UC), uranium (U), vanadium (V), 

zinc (Zn), zirconium (Zr).
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Supplementary Table 2. Assessment of the reporting quality of the studies included in the systematic review (n=32).
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