

Emerging role of environmental pollutants in inflammatory bowel disease risk, outcomes and underlying mechanisms

Maria Manuela Estevinho ,^{1,2} Vishal Midya,³ Shirley Cohen-Mekelburg ,^{4,5} Kristine Højgaard Allin ,^{6,7} Mathurin Fumery ,⁸ Salome S Pinho,^{9,10,11} Jean-Frederic Colombel ,¹² Manasi Agrawal ,^{6,12}

► Additional supplemental material is published online only. To view, please visit the journal online (<https://doi.org/10.1136/gutjnl-2024-332523>).

For numbered affiliations see end of article.

Correspondence to

Dr Manasi Agrawal;
manasi.agrawal@mountsinai.org

Received 6 June 2024
Accepted 9 August 2024
Published Online First
23 August 2024

ABSTRACT

Epidemiological and translational data increasingly implicate environmental pollutants in inflammatory bowel disease (IBD). Indeed, the global incidence of IBD has been rising, particularly in developing countries, in parallel with the increased use of chemicals and synthetic materials in daily life and escalating pollution levels. Recent nationwide and ecological studies have reported associations between agricultural pesticides and IBD, particularly Crohn's disease. Exposure to other chemical categories has also been linked with an increased risk of IBD. To synthesise available data and identify knowledge gaps, we conducted a systematic review of human studies that reported on the impact of environmental pollutants on IBD risk and outcomes. Furthermore, we summarised in vitro data and animal studies investigating mechanisms underlying these associations. The 32 included human studies corroborate that heavy and transition metals, except zinc, air pollutants, per- and polyfluorinated substances, and pesticides are associated with an increased risk of IBD, with exposure to air pollutants being associated with disease-related adverse outcomes as well. The narrative review of preclinical studies suggests several overlapping mechanisms underlying these associations, including increased intestinal permeability, systemic inflammation and dysbiosis. A consolidated understanding of the impact of environmental exposures on IBD risk and outcomes is key to the identification of potentially modifiable risk factors and to inform strategies towards prediction, prevention and mitigation of IBD.

INTRODUCTION

Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic immune-mediated disease primarily involving the gastrointestinal tract. IBD was first reported in Western countries in the late 18th to mid-19th centuries, coinciding with the Industrial Revolution and a major ecologic shift towards the modern environment. A similar pattern has been observed in developing and recently developed countries in Asia and Africa, where IBD has increased in incidence following modernisation and urbanisation in the 1990s–2000s.¹ Globally, the estimated number of IBD cases increased from 3.3 million in 1990 to 4.9 million in 2019, a rise of 47.5%,² accounting for over \$25 billion in

annual direct healthcare costs in the USA.³ Therefore, IBD is a global public health concern.² While both genetic and non-genetic risk determinants are implicated, the aetiology of IBD remains inadequately elucidated, a roadblock to IBD prediction and prevention efforts. Genome-wide association studies have identified over 200 loci associated with IBD, but less than a third of cases are attributed to genetics alone, further supporting the role of the environment in IBD onset and outcomes.⁴ Uncovering how environmental factors influence IBD onset and disease course could ultimately inform strategies towards mitigation of risk and disease progression.⁵ The imperative to delve into this topic is heightened considering the increasing levels of global pollution and environmental contaminants (eg, air pollutants and industrial chemicals) over the last decades, resulting from unregulated modernisation and industrialisation.⁶ It is also relevant to acknowledge that changes in exposure patterns are associated with climate change and widening health disparities, pertinent concerns in the current era. In this systematic review, we summarise the available human studies on the impact of environmental pollutants on IBD risk and outcomes. Additionally, we compile available in vitro and animal studies data on underlying mechanisms and identify knowledge gaps.

METHODS

Systematic review

We conducted this systematic review after registration in the International Prospective Register of Systematic Reviews (PROSPERO, registration number: CRD42024524629), following the Preferred Reporting Items for Systematic Reviews guidance for data extraction and reporting.⁷ Our research question was formulated using the 'Population, Intervention, Comparison and Outcome' (PICO)⁸ methodology. The population of interest was healthy individuals at risk of developing IBD (prospective cohorts) or individuals with IBD (retrospective cohorts, genome-wide association studies or studies evaluating the impact of exposure on disease outcomes); the intervention or exposure of interest, was specific environmental pollutants; the comparator was individuals without IBD diagnosis/outcomes; and the endpoints were the development of IBD or IBD-related outcomes.

© Author(s) (or their employer(s)) 2025. No commercial re-use. See rights and permissions. Published by BMJ Group.

To cite: Estevinho MM, Midya V, Cohen-Mekelburg S, et al. *Gut* 2025;74:477–486.

Literature search

Three online databases (MEDLINE, Web of Science and Scopus) were searched for studies addressing the PICO. The query used for PubMed was pollutants or pesticides or particulate matter (PM) or heavy metals or per- and polyfluoroalkyl substances (PFAS) or $PM_{2.5}$ or PM_{10} AND inflammatory bowel disease or Crohn's disease or ulcerative colitis or intestinal inflammation. The search included studies published in databases whose inception dates up to 29 April 2024. In addition, the references of articles identified as being relevant were reviewed for further published data matching the PICO question. Screening and selection of studies were done by two authors (MME and MA) using Rayyan, and discrepancies were resolved by a third arbitrator (VM).

Inclusion and exclusion criteria

Original research studies were included if they evaluated the impact of specific environmental pollutants, either in utero or throughout life, on healthy individuals at risk of developing IBD or on patients diagnosed with IBD, across all ages, in both urban and rural areas of developed and developing regions. Studies not meeting the inclusion criteria, as well as those focussing solely on diet or other exposures, reviews, case reports, guidelines or editorials, were excluded. No restrictions were imposed based on language. We excluded studies on exposure to plastics in this review due to the unique physical and chemical properties of these pollutants, challenges associated with their measurement and the limited available human data on plastic exposure and IBD at present.

Data extraction and quality assessment

The following information was extracted from the studies: citation details, characteristics of the study population, follow-up duration, details on the exposure, tools used to assess exposure (eg, biomarkers, surveys), study outcomes (incidence/prevalence of IBD, disease characteristics or outcomes), studied confounders and assessment of exposure-response (if available). The reporting quality of the studies was evaluated independently by two reviewers (MME and MA) using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria,⁹ considering 22 parameters for cohort and case-control studies. For ecological studies and genome-wide association studies, only the criteria relevant to those specific designs were evaluated.

Narrative review

We summarised data on the impact of pollutants on intestinal inflammation, relevant to IBD, from in vitro and animal model studies using a narrative approach. The studies included in the narrative review were gathered through a non-systematic search on PubMed. The search query used was 'pollutants or pesticides or particulate matter (PM) or heavy metals or PFAS or $PM_{2.5}$ or PM_{10} AND ((in vitro) or (in vivo)) and (intestinal inflammation)'. References from clinical studies included in our systematic review and prior review papers on the subject were also considered.

RESULTS

Categories of pollutants: characteristics, sources and distribution

A pollutant is any chemical substance that appears in an organism or the environment at levels exceeding permissible limits.¹⁰ These compounds are typically known for their

widespread distribution, and, along with their byproducts, they can persist in and interact with the environment for extended periods. Pollutants can be categorised based on different parameters, for example, sources, physical and chemical properties and impact on environmental and human health.¹⁰ Considering the source, pollutants may be classified into (1) water pollutants (eg, chemicals, microbial contaminants, algal toxins, pharmaceuticals and personal care products); (2) air pollutants (eg, industrial and agricultural emissions, vehicle exhaust and smoking); (3) soil pollutants (eg, -cidal agents, heavy metals and industrial byproducts) and (4) others (comprising light, noise, radioactive, thermal and microbial pollutants).¹¹ Pollutants can also be grouped based on chemical composition (inorganic vs organic), boiling point (volatile or non-volatile) and ability to undergo biomagnification through the food chain based on their fat solubility.¹¹ Highly persistent organic pollutants include PFAS, pesticides and polycyclic aromatic hydrocarbons (PAH), the former representing a highly persistent group of thousands of fluorinated compounds, 'forever chemicals', that are used extensively in industries, in household and personal items, food and packaging.¹² In this review, based on a composite¹³ of the above features as well as available data, chemical pollutants were classified into the following subtypes: (1) heavy and transition metals; (2) air pollutants, including PM (fine inhalable particles¹⁴ subdivided according to their sizes in $PM_{2.5}$, $PM_{2.5-10}$ and PM_{10} ¹³), gaseous molecules (nitrogen oxides— NO_x , sulphur dioxide— SO_2 , carbon monoxide— CO and ozone— O_3), volatile organic compounds and greenhouse gases (carbon dioxide— CO_2 , methane— CH_4 , nitrous oxide— N_2O and fluorinated gases); (3) industrial compounds and organic pollutants (including PFAS, PAH, solvents and flame retardants); (4) -cidal agents (pesticides, herbicides and insecticides).

Summary of literature search

The systematic search yielded 3743 results. Of these, 583 duplicates were excluded, and 3128 records were eliminated based on inclusion and exclusion criteria (figure 1). We included 32 studies in the final qualitative systematic review. Study characteristics and main results are presented in online supplemental table 1. Of these, 12 were case-control studies,^{12 14-24} seven were retrospective cohort analyses,²⁵⁻³¹ four were ecological analyses,³²⁻³⁵ four were cross-sectional,³⁶⁻³⁹ three were prospective cohort studies,⁴⁰⁻⁴² and two were genome-wide association studies.^{43 44} These studies pertained to the following categories of specific pollutants: heavy metals or transition metals (n=5),^{14-16 31 40} air pollutants (n=16),^{17-21 25-27 32-34 36 39 41 43 44} industrial compounds and organic pollutants (n=10)^{12 22-24 28-30 35 37 38} or pesticides (n=1).⁴² 25 studies reported on CD and UC risk, while five reported on UC alone^{15 17 29 36 44} and one on CD³² alone; the paediatric population was the focus of one study.²⁷ Six studies analysed the impact of pollutants on disease course.^{25 32 34 36 39 41} Online supplemental table 2 summarises the STROBE assessment for all studies.

Impact of pollutants on IBD risk

In this section, we summarise the results of the human studies focussing on the impact (harmful, null or protective) of specific pollutants on IBD risk (figure 2).

Heavy metals or transition metals

It is important to acknowledge that while some metals are essential as nutrients (cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo),

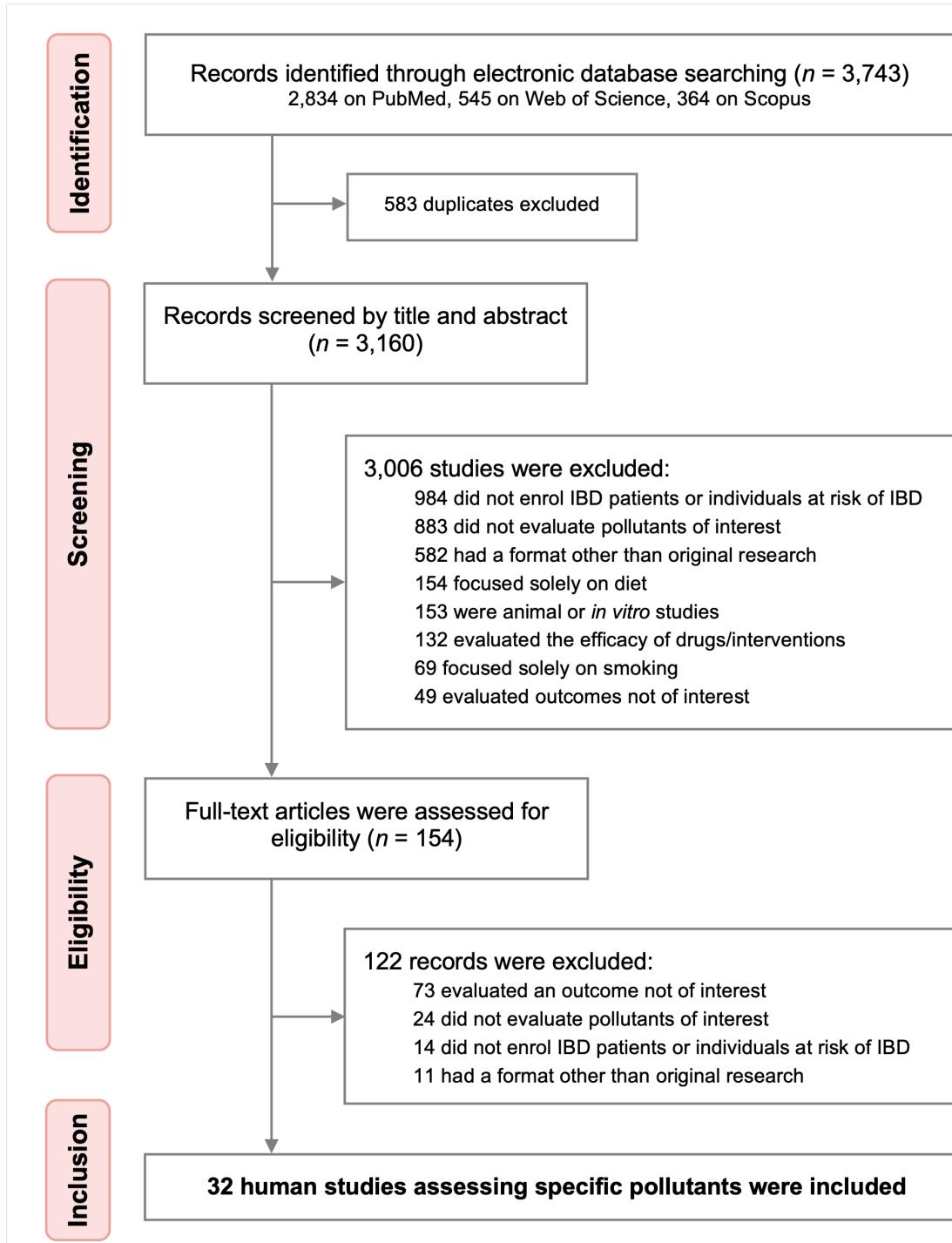
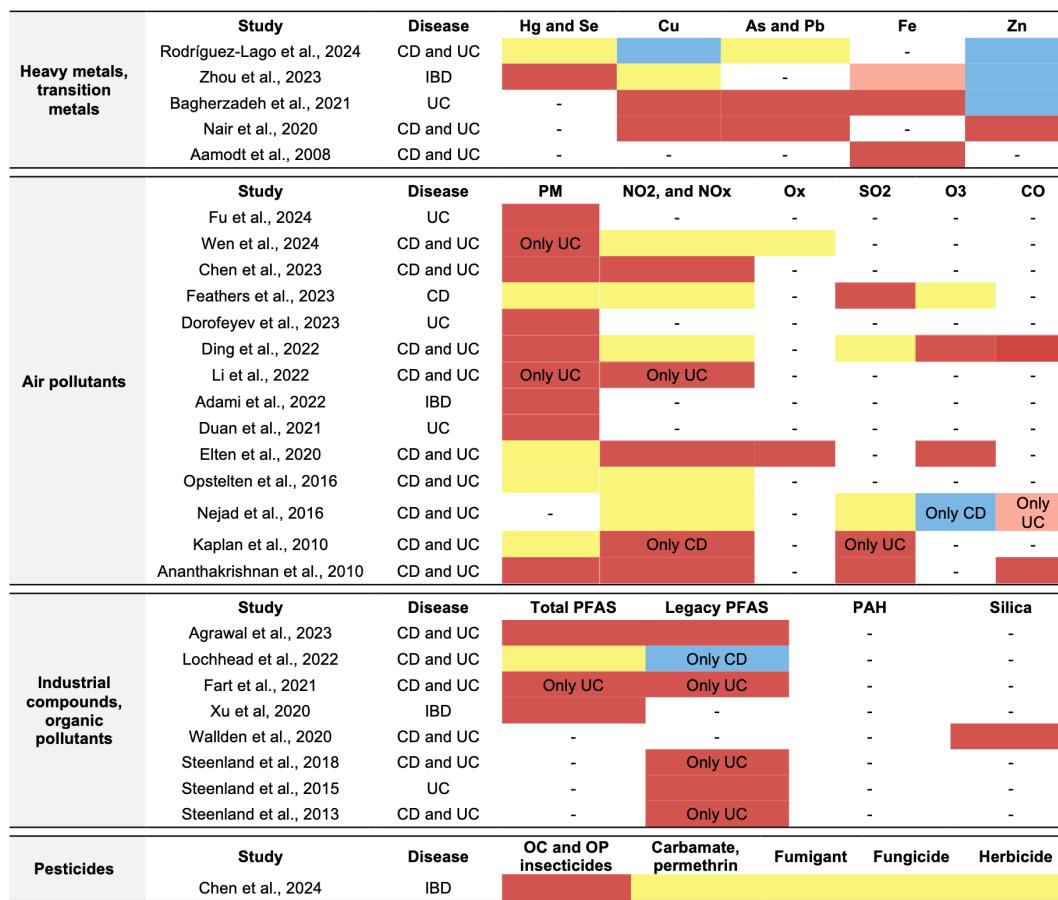



Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart of studies' selection.

nickel (Ni), selenium (Se) and zinc (Zn)), others (arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg)) are considered systemic toxicants and human carcinogens. Additionally, all metals can be toxic at some level, depending on several factors, including the dose, route of exposure, chemical species and characteristics of the exposed individuals.

Five studies investigated the impact of metal exposure on IBD risk. The methods used to assess exposure were variable: two studies evaluated the quality of water consumed by the study population (at the region⁴⁰ and district level,³¹ at or shortly after diagnosis), while others measured metals in colon biopsies,

deciduous teeth¹⁶ and hair samples.¹⁴ Notably, only the last two matrices allowed for measuring metals at a high temporal resolution, with the analysis of tooth dentine being the only one that generates temporal profiles of uptake during foetal growth.⁴⁵ The study on teeth¹⁶ evaluated exposures from the second trimester of pregnancy until 6 months after birth, while the hair analyses using 3–4 cm of hair proximal to the scalp allowed for the assessment of exposure in adulthood, reflecting exposure up to 4 months before sampling. In all studies, individuals who developed IBD had higher concentrations of metals than healthy controls. An association between measured heavy metals and

■ Significantly negative association | ■ Non-significantly negative association | ■ No association
 ■ Non-significantly positive association | ■ Significantly positive association | - No data

Figure 2 Summary of the main findings in each pollutant category. As, arsenic; CO, carbon monoxide; Cu, copper; CD, Crohn's disease; IBD, inflammatory bowel disease; Fe, iron; Pb, lead; Hg, mercury; NO₂, nitrogen dioxide; NO_x, nitrogen oxides; OC, organochlorine; OP, organophosphate; Ox, oxidants, O₃, ozone; PM, particulate matter; PFAS, per- and poly-fluoroalkyl substances; PAH, polycyclic aromatic hydrocarbons; Se, selenium; SO₂, sulphur dioxide; UC, ulcerative colitis; Zn, zinc.

IBD was reported in three studies.^{15 31 40} The specific profile of heavy metals varied across studies; Pb, Cu^{15 16} and Fe^{15 31} were associated with IBD risk in more than one study. Conversely, three studies^{14 15 40} reported higher levels of Zn in individuals without IBD relative to those with IBD. The reporting quality of the studies was moderate-high for all studies, apart from one online supplemental table 2),¹⁵ which provided a less detailed description of the recruitment process and did not address bias or confounders. Also, most did not provide information regarding sample size calculation due to the exploratory nature of these studies.

Air pollutants

The impact of air pollution on the risk of IBD was estimated in 10 studies^{17–21 26 27 33 43 44}, of which two studies^{17 44} focused on UC outcomes. The methodology for exposure assessment was variable: four used land use regression modelling,^{19 20 43 44} two used surveys^{18 32} and the remaining used geographic information systems (GIS) and satellite monitoring data. Four studies^{17 19 43 44} reported that higher levels of PM_{2.5} were associated with UC risk, and one study²⁶ reported an association with IBD overall. When limiting the analysis to paediatric-onset IBD, there was no impact of PM_{2.5} exposure.²⁷ Conversely, in a nested case-control study²⁰ with a smaller sample size, the opposite association was

reported, with lower levels of PM_{2.5} in individuals with IBD compared with those without IBD (adjusted OR of 0.24 (95% CI 0.07 to 0.81) per 5 lg/m³). One study¹⁹ reported a positive association between PM_{2.5–10} and PM₁₀ and the risk of UC in a dose-dependent manner. On the other hand, another study reported null findings.⁴⁴

With respect to other air pollutants, based on GIS data, nitrogen oxides were reported to be significantly associated with the risk of UC in one study¹⁹ and CD in another.²¹ In another GIS-based analysis of air pollutants, oxidant levels during pregnancy and childhood were recognised as risk factors for paediatric-onset IBD, but null associations were reported for exposure to other gases.²⁷ Regarding reporting quality, 4 of the 15 studies did not provide detailed information on recruitment criteria, patients' selection, data collection and analysis or management of confounders and sources of bias.^{17 25 33 39}

Industrial compounds and organic pollutants

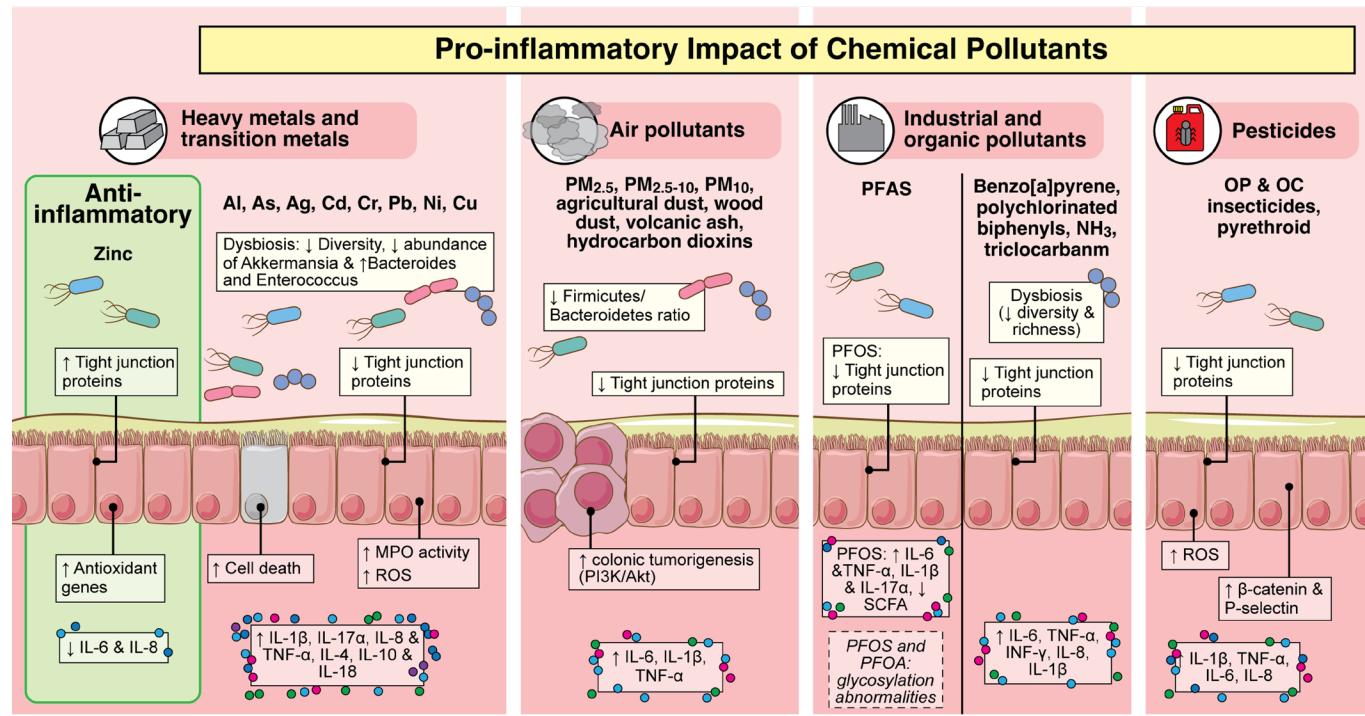
We identified 10 relevant studies in this subgroup, of which seven studied the impact of exposure to PFAS on IBD.^{12 22 23 28–30 38} In a nested case-control analysis¹² of military recruits, higher concentrations of the PFAS mixture (consisting of nine PFAS chemicals) up to 10 years before IBD diagnosis were associated with an increased risk of both CD and UC in a dose-dependent manner.

In other studies focussing on specific legacy, PFAS identified associations between individual PFAS chemicals (perfluorooctanoic acid (PFOA)^{23 28-30} and perfluorooctane sulfonate (PFOS)²³) and the risk of UC, with a dose-response relationship reported in two of them.^{28 30} Conversely, in another report from the Nurses' Health Study, inverse associations were identified between the levels of three legacy PFAS (PFOA, PFOS and perfluorodecanoic acid (PFDA)) and the risk of CD, while no association was found for UC.²² Of note, the median PFAS level in this cohort was lower than the national average. Two^{35 38} other analyses reported null associations between PFAS and IBD based on zip code-level exposure data.

Regarding other industrial contaminants, one case-control study²⁴ identified a higher risk of UC in men exposed to silica dust in a time-dependent manner, while the risk of CD was higher in exposed women. Exposure to electronic waste (discarded electronic devices and equipment) enriched with polycyclic aromatic hydrocarbon compounds has been associated with systemic inflammatory changes in children (increased absolute lymphocyte and monocyte counts, lower serum levels of CD4⁺ T cells, increased B cells and sialyl Lewis A concentrations), although their impact on IBD as an outcome is not known.³⁷ The reporting quality of the studies addressing industrial and organic contaminants was adequate.

Pesticides

One study⁴² prospectively determined exposure to specific pesticides among agricultural workers and families using questionnaires. Exposure to organochlorine (OC) and organophosphate (OP) insecticides was associated with elevated hazards of IBD, particularly dieldrin (adjusted HR (aHR) 1.59, 95% CI 1.03 to 2.44), toxaphene (aHR 1.56, 95% CI 1.05 to 2.32) and terbufos


(aHR 1.53, 95% CI 1.19 to 1.96), without a clear exposure-response trend. The reporting quality was adequate.

Impact of pollutants on IBD-related outcomes

Data on the impact of specific pollutants on IBD-related outcomes is more limited. Six studies examined the impact of air pollutants on disease course (both CD and UC: n=4, CD: n=1,³² UC: n=1³⁶). The studies that assessed IBD exacerbations based on hospitalisation^{25 34 39} or outpatient visits³⁶ found a positive association with air pollutant emissions. A dose-response association was reported between total air pollutants and IBD-related hospitalisations³⁵ and between daily outpatient visits for UC and PM_{2.5} concentrations.³⁶ Exposure to PM_{2.5} and NO_x was associated with an increased risk of enterectomy or all-cause mortality in a prospective analysis of over 4700 individuals with IBD.⁴¹ In this study, a concentration-response relationship was observed; patients exposed to each IQR increase in pollutants such as PM_{2.5}, NO_x, NO₂ and PM₁₀ experienced a 10%–16% higher risk of enterotomy and all-cause mortality. An ecological study³² reported a higher CD-related mortality rate in zip codes with higher exposure to SO₂; however, no association was found for PM_{2.5}. CO was also reported to increase the risk of hospitalisations, particularly due to UC.^{25 39} On the other hand, the role of O₃ is not clear.²⁵

Association between pollutants and gut inflammation: data from in vitro and animal studies

Here, we summarise available data on mechanisms underlying the impact of different exposures on gut inflammation, based on in vitro data and animal studies (figure 3).

Figure 3 Proposed underlying mechanisms mediating IBD risk with exposure to environmental pollutants: a summary of in vitro data and in vivo animal studies. Al, aluminium; Ag, silver; As, arsenic; Cd, cadmium; Cr, chromium; Cu, copper; IL, interleukin; Pb, lead; MPO, myeloperoxidase; Ni, nickel; PM, particulate matter; PFAS, per- and polyfluoroalkyl substances; PFOS, perfluorooctane sulfonate; PFOA, perfluorooctanoic acid; PI3K-PKB/Akt, phosphoinositide-3-kinase-protein kinase B/Akt; ROS, reactive oxygen species; SCFA, short-chain fatty acids; TNF, tumour necrosis factor.

Heavy metals or transition metals

Exposure to different metals (Al,⁴⁶ Cd,⁴⁷ Ni,⁴⁸ Ag,⁴⁹ Hg,⁵⁰ Pb,⁵¹ Cr⁵² and As⁵³) was shown to induce a proinflammatory phenotype in intestinal epithelial cells (increased expression of interleukin (IL)-1 β ,⁵³ IL-17 α ,⁵³ IL-8,⁵³ tumour necrosis factor(TNF)- α ,⁴⁷ IL-6,⁵⁴ IL-4,⁵⁴ IL-10⁴⁹ and IL-18⁴⁹). Also, exposure to metals like Al and Cd has been shown to impact cell death and renewal, increase gut permeability and exacerbate experimental colitis in mice.⁵⁵ Other mechanisms have also been proposed, including reduced gut microbiota diversity, altered composition (eg, decreased abundance of Akkermansia with chronic exposure to Al, Cd, Cr, Cu and Pb⁵²) and changes in metabolic function that may, in turn, affect the host's immune and metabolic responses.⁵¹ In addition, exposure to Pb, Cu and Fe, for instance, may also directly induce inflammatory responses and cause oxidative stress.⁵¹ A recent exploratory pilot analysis examined the complex connection among metals, microbiome and intestinal inflammation. This analysis revealed that exposure to certain metals during pregnancy, combined with specific bacterial types during childhood (termed metal-microbial cliques), correlated with elevated faecal calprotectin levels, a marker of subclinical inflammation.⁵⁸ Conversely, Zn seems to have a protective role, improving the antioxidant and immune capacities and reducing apoptosis of intestinal epithelial cells in animal models.⁵⁹ Recent reports suggest that exposure to Pb may secondarily induce changes in Cu, Fe and Zn levels,⁶⁰ broadening further the complexity and relevance of metal exposure.

Air pollutants

PM, specifically PM_{2.5} which has the highest penetration ability, is the most studied air pollutant. In mouse models, exposure to PM_{2.5} alters circulating cytokine levels (decrease in Th17,⁶¹ increase in TNF- α ,⁶¹ IL-1 β ⁶² and IL-6⁶²). Also, PM_{2.5} is reported to impact the gut microbiome in several animal models, decreasing bacterial diversity and changing the firmicutes/bacteroidetes ratio⁶³ and microbial metabolic pathways.⁶² PM_{2.5} also promotes oxidant-dependent activation of the nuclear factor kappa B (NF- κ B) pathway, with downstream disruption of tight junctions, and increases the permeability of human Caco-2 cell monolayers.⁶³ However, two-dimensional models, like Caco-2 cells, may not accurately reflect the characteristics of native cells, particularly regarding the expression of receptors and transporters. Using a three-dimensional model that incorporates stromal cells and extracellular matrix, Woodby *et al*⁶⁴ have shown that chronic exposure to PM affects gut redox homeostasis and decreases the levels of cell-cell adhesion proteins (zonula occludens protein-1 and claudin-1). Moreover, other reports have demonstrated that PM can accelerate chemically induced colonic tumour formation in murine models, a process that relies on the phosphoinositide 3-kinase (PI3K)/AKT pathway.⁶⁵ This finding may be relevant considering the increased risk of colorectal cancer in patients with IBD with active inflammation. Finally, PM₁₀ was demonstrated to interfere with calcium signalling, absorption and digestion pathways, exacerbating pre-existing intestinal inflammation in an organoid model.⁶⁶

Industrial compounds, byproducts and organic pollutants

In mice studies, exposure to PFAS was associated with a decrease in firmicutes/bacteroidetes ratio, a decrease in Clostridiales, Enterobacteriale and Lactobacillales and a loss of gut barrier integrity due to a reduction in short-chain fatty acid production and intestinal tight junction proteins (zonula occludens-1,

occludin and claudin-1).⁶⁷ Others have demonstrated increased expression of proinflammatory cytokines (particularly IL-6, TNF- α and IL-1 β) and the expansion of systemic CD4 $^+$ T cells with PFOS.⁶⁸ This compound was also reported to increase neutrophil recruitment to the intestine of zebrafish larvae, which was later validated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice.⁶⁸ Studies conducted on bivalves using multiomics analyses suggested that the peroxisome proliferator-activated receptor-mediated lipid metabolism (Toll-like receptors/myeloid differentiation primary response 88/NF- κ B and PI3K-Akt-mTOR) and the autophagy pathways likely mediate PFOA-associated immunotoxicity.⁶⁹ These pathways coordinate cellular responses to environmental stimuli, cell growth and proliferation, and immune regulation.⁶⁹

Furthermore, evidence from human metabolomics suggests that PFAS exposure impacts important cellular metabolic pathways, including lipid, amino acid, carbohydrate/glycans, nucleotide, energy metabolism and glycan biosynthesis, which may suggest the effects of PFAS exposure on cellular energy and membrane disruption that can be potentially associated with pathological processes.⁷⁰ Also, levels of PFOS and PFOA in human serum samples are associated with altered IgG glycosylation in both children and adults.⁷¹ Several glycosylation abnormalities have been described in IBD as, for example, defects in N-glycan branching of mucosal T cells from UC, leading to T-cell hyperactivation and increased disease severity.⁷² More recently, in a pilot analysis of the PFAS mixture in dried blood spots from neonates, an estimate of prenatal exposure, PFAS levels were associated with faecal calprotectin at 3 years of age, particularly in the offspring of women with IBD.⁷³

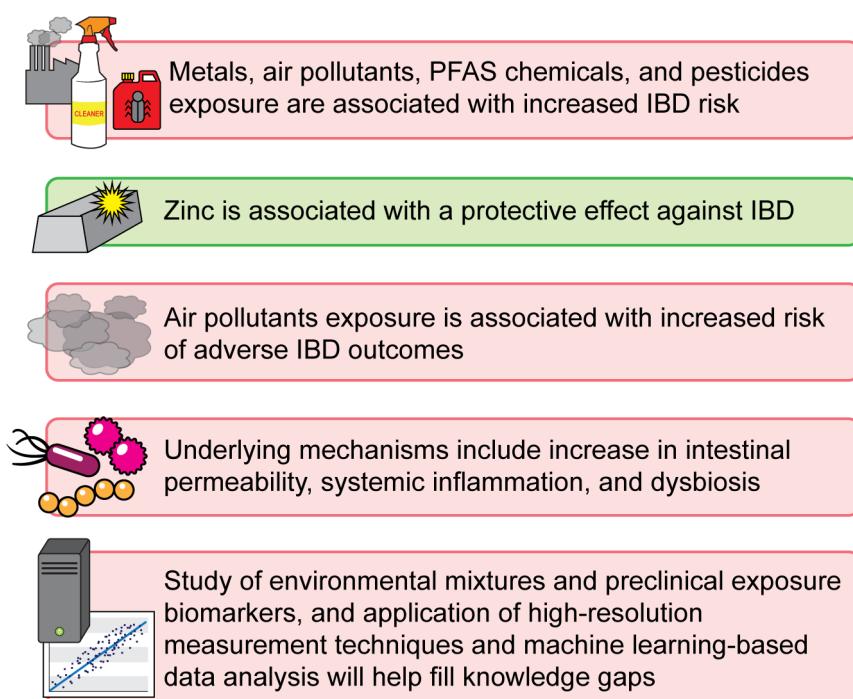
Data regarding the mechanistic effects of other contaminants such as benzo[a]pyrene,⁷⁴ polychlorinated biphenyls, ammonia⁷⁵ and triclocarban⁷⁶ are few. However, in line with PFAS data, exposure to these chemicals increases the expression of IL-6, TNF- α and IL-1 β and leads to altered intestinal permeability.

Pesticides

Recent preclinical evidence supports the impact of diverse pesticides on the intestinal mucosa. Phosalone⁷⁷ and chlorpyrifos,⁷⁸ OP pesticides, were reported to increase oxidative stress, TNF- α , IL-1 β and IL-6 levels and to decrease intestinal permeability in mice. Similarly, exposure to avermectin and pyrethroid pesticides (fenpropothrin and deltamethrin) was found to increase oxidative stress and inflammation and to compromise the integrity of the intestinal barrier in carp⁷⁹ and mice.⁸⁰ Recently, a study used an innovative approach combining publicly available databases, zebrafish chemical screens, machine learning and mouse preclinical models to test for the effects of over 200 chemicals on intestinal inflammation.⁸¹ Of the 20 top candidate chemicals to induce intestinal inflammation, 11 were -cidal agents; two herbicides (flumetralin and propyzamide) and two pesticides (azinphos-methyl and phorate) boosted TNBS-induced intestinal inflammation in zebrafish. Propyzamide was also found to induce colon shortening and intestinal inflammation (promoting T_H1 and T_H17 cell differentiation and increased expression of IL-17 $+$ T cells) in mice.⁸¹

DISCUSSION

We systematically summarised 32 human studies on environmental pollutants relevant to IBD risk and outcomes. Overall, these studies support an association between heavy and transition metals, air pollutants, industrial contaminants, insecticides and an increased risk of IBD. In contrast, Zn exposure may be


protective against IBD. Limited data suggests that IBD outcomes, such as hospitalisations, are more prevalent with increased exposure to air contaminants. Studies with comparable study designs will be important to clarify, as well as quantify, the impact of pollutants on IBD. Based on animal models and *in vitro* data, most of these pollutants promote intestinal inflammation through changes in the gut microbiome, loss of intestinal barrier function and systemic inflammation. Globally, the reporting quality of the studies was adequate.

Heavy and transition metals play vital roles in biological processes, including as enzyme cofactors and electron transporters. Thus, any dyshomeostasis in these metals can disrupt metabolic and physiological functions. Both case-control^{14–16} and cohort^{31 40} studies demonstrated associations between metals and IBD, with individuals exposed to elevated concentrations of Mn, Hg, As, Pb and Fe at a greater risk of IBD. These findings are supported by evidence from a pilot study on deciduous teeth and an exploratory analysis of healthy children, the latter reporting an interaction between prenatal metal exposure and microbiome signatures towards downstream intestinal inflammation.⁵⁸ In line with this, preclinical studies have shown both direct and microbiome-related effects of metals on the microbial metabolic profile, intestinal permeability, cytokine milieu and systemic immune dysregulation.⁸² In contrast, Zn appears to decrease the risk of IBD.¹⁵ This has biological plausibility considering Zn's anti-inflammatory and antioxidant effects in animal studies.⁵⁹ Furthermore, this is corroborated by two large prospective cohort studies in which an inverse relationship between dietary Zn intake and the risk of CD was detected. Yet, no such association was observed for UC.⁸³

With respect to air pollutants, which may be inhaled or ingested, five of the seven reports^{19 37 41 42} that investigated the effect of PM_{2.5}^{19 37 41 42} reported a harmful association with IBD, particularly with UC.^{43 44} This association is supported by the proinflammatory effects of PM_{2.5} in the intestinal tract in *in vitro* and animal studies. The association of PM_{2.5} with UC

but not with CD, highlighted in some studies, may be related to perturbation of colonic microbiota composition by air pollutants and warrants further study. Other air pollutants, such as total oxidant agents,²⁷ NO²¹ and SO₂,²¹ may be particularly relevant in early life.⁸⁴ Indirect data also supports this framework. In a population-based cohort study, early-life exposure to agricultural land use was associated with increased CD risk, while exposure to greenspace and biodiversity was protective.⁸⁵ These exposures may modulate NO and SO₂ levels, mainly from vegetable crops, fertilisers or livestock. Certainly, exposures during the early life period, which extends from the prenatal period to early childhood, are critical to microbiome establishment, immune maturation and the risk of IBD later in life.^{85–88} Exposures in adulthood may be relevant to older-onset IBD.⁸⁹ Studies exploring the effects of pollutants at different stages of life are likely to be relevant, particularly towards honing prediction and prevention strategies. The impact of air pollutants on adverse IBD outcomes such as hospitalisation,^{25 34 39} surgery⁴¹ and mortality³² are consistent with those pertaining to other immune-mediated diseases, such as rheumatoid arthritis⁹⁰ and emphasise the importance of mitigation strategies.

The importance of industrial contaminants has increased, not only because their sources are proliferating but also because some have long-lasting persistence, rising over time.¹² Among these, the most relevant are PFAS, a family of over 8000 synthetic chemicals widespread in the environment. The adverse effects of PFOS and PFOA on gut homeostasis are consistently reported in animal and *in vitro* studies, as well as in recent analyses of human serum samples and neonatal dried blood spots. This knowledge and the PFAS association with a broad range of conditions,⁹¹ including cancer and immunotoxicity, have been recognised by European and American agencies and authorities.⁹¹ However, not all epidemiological studies reported an association between PFAS levels and IBD risk. This highlights the importance of studying PFAS (and other pollutants) in totality, such as a mixture, rather than measuring individual compounds,

J Gregory ©2024 Mount Sinai Health System

Figure 4 Main findings of the review. IBD, inflammatory bowel disease; PFAS, per- and polyfluoroalkyl substances.

such as legacy PFAS.¹² Furthermore, delineating the impact of PFAS on gut mucosal integrity and permeability by assessing its effects on mucosal glycocalyx composition and microbiota functions is relevant. This approach can provide insights into the underlying causes of the transition from health to inflammation associated with the onset of IBD.

With respect to pesticides, their detrimental impact on intestinal mucosa has been reported in numerous *in vitro* and animal studies. However, only one clinical study explored the role of pesticides in modulating the risk of IBD. Although this prospective study found a positive association with OC and OP insecticides, the exposure was measured using questionnaires, making it subjective and prone to recall bias.⁴² While more objective exposure assessments are needed, two recent population-based studies^{85 92} indirectly support the role of pesticides as risk factors. The first, from the Danish population, identified that early life exposure to agricultural land use was linked to a higher risk of CD.⁸⁵ The second, which evaluated French farmers, identified some agricultural activities in which pesticides are commonly applied, like fruit arboriculture and crop farming, to be more strongly associated with IBD risk.⁹²

While reporting important findings for specific pollutants, this review also highlights knowledge gaps (figure 4). Regarding metals, these include the limited number of human studies with relatively small sample sizes and the absence of individual-level and long-term assessments of exposures in many cases. Further, there are few tools available to establish concentration–effect relationships. Future work is also needed to understand the interactive effects of multiple metals or metal mixtures and to unravel the dysregulation in foetal metal biodynamics (eg, altered rhythmicity, a biomarker of metal homeostasis and a concept different from exposure).⁹³ The complex relationship between metals and the gut microbiome is also just beginning to be understood. Even though the existing evidence for air pollutants is robust, there is a need for more comprehensive exposure assessments, accounting for the dynamics introduced by environmental policies and understanding how exogenous exposure to air pollutants exacerbates the effect of endogenous pollutants like pesticides and PFAS. Concerning industrial products, although several clinical studies address PFAS, using advanced laboratory techniques and statistical models is crucial to detecting meaningful immunological effects and conducting valid risk assessments. Regarding *in vitro* and *in vivo* animal studies, little evidence exists for other PFAS compounds other than PFOS and PFOA. The impact of relevant industrial contaminants like hydrogen sulphide, triclocarban, ammonia and flame retardants on gut inflammation remains to be explored. Regarding -cidal agents, it remains difficult to evaluate past and time-varying exposures, dose-effect measures, and the role of unexplored vectors such as soil. There is a paucity of data for other agents, such as pharmaceutical products and endocrine disruptors.

Overall, the measurement of exposure biomarkers with high temporal resolution, particularly in preclinical biological samples and the application of advanced measurement techniques and composite data analysis are needed to clearly delineate the impact of environmental pollutants on IBD. This approach may also provide insights into the role of different environmental insults in different stages of life and clarify whether the timing of exposure may be more critical than the duration. Mechanistic data using IBD models, rather than extrapolation from other models, will provide granular insights into IBD pathogenesis. Finally, it is important to note that variables beyond environmental pollutants, such as genetic, epigenetic and dietary factors, are likely to modulate IBD risk and outcomes via direct and interaction

effects, highlighting the complexity of IBD pathogenesis. For example, the effect of smoking on health outcomes is modulated by genetic variants that influence its metabolism.^{94 95} Future multiomic analyses will uncover gene–pollutant interactions in the context of IBD.

Finally, it is key to advance and upscale the field of bioremediation, identifying microorganisms, enzymes and inert compounds that may help eliminate or, at least, neutralise pollutants. These transdisciplinary approaches will provide evidence towards effective prevention strategies in regulatory and clinical contexts, as well as provide a framework towards understanding environmental impacts on other immune-mediated diseases. In the meantime, based on current knowledge and in line with international recommendations, it is crucial to minimise harmful exposures through modification of production processes, use of less toxic materials, implementation of conservation techniques, reuse and upcycling. Such practices, at individual and societal levels, are likely to be relevant towards improving health outcomes overall.

Author affiliations

¹Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal

²Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal

³Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA

⁴Division of Gastroenterology and Hepatology, University of Michigan Medicine, Ann Arbor, Michigan, USA

⁵VA Center for Clinical Management Research, VA Ann Arbor Health Care System, Ann Arbor, Michigan, USA

⁶Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark

⁷Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark

⁸Department of Gastroenterology, CHU Amiens and PériTox, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France

⁹i3S, Institute for Research and Innovation in Health, Porto, Portugal

¹⁰ICBAS-School of Medicine and Biomedical Sciences, Porto, Portugal

¹¹Faculty of Medicine, University of Porto, Porto, Portugal

¹²The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

Correction notice This article has been corrected since it published Online First. The author's name, Salome S Pinho, has been updated.

X Shirley Cohen-Mekelburg @ShirleyCoMekMD, Kristine Højgaard Allin @ KristineAllin, Mathurin Fumery @Matfum and Manasi Agrawal @manasiagrawalmd

Acknowledgements The authors thank Jill Gregory, Certified Medical Illustrator, Icahn School of Medicine at Mount Sinai, New York, for the illustrations.

Contributors All authors planned and formatted the review. MME conducted the literature search and data integration. MME, VM, SC-M and MA drafted the manuscript. MME, VM, SC-M, KHA, MF, SP, J-FC and MA conducted critical revision of the manuscript for important intellectual content. MA is responsible for the overall content as guarantor.

Funding MA is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (K23DK129762-02), the International Organisation for the Study of Inflammatory Bowel Disease and the Crohn's and Colitis Foundation Litwin IBD Pioneers Award. KHA is supported by the Danish National Research Foundation (DNRF148) and the Novo Nordisk Foundation (NNF23OC0086595).

Competing interests MF reports receiving lecture/consultant fees from Abbvie, Ferring, Tillotts, MSD, Biogen, Amgen, Fresenius, Hospira, Sandoz, Pfizer, Bristol Myers Squibb, Celgene, Gilead, Boehringer, Eli Lilly, Nordic-Pharma, Arena, Galapagos, Janssen and Takeda. JFC reports receiving research grants from AbbVie, Janssen Pharmaceuticals and Takeda; receiving payment for lectures from AbbVie, Amgen, Allergan, Ferring Pharmaceuticals, Shire and Takeda; receiving consulting fees from AbbVie, Amgen, Arena Pharmaceuticals, Boehringer Ingelheim, Bristol Myers Squibb, Celgene Corporation, Eli Lilly, Ferring Pharmaceuticals, Galmed Research, Glaxo Smith Kline, Geneva, Iterative Scopes, Janssen Pharmaceuticals, Kaleido Biosciences, Landos, Otsuka, Pfizer, Prometheus, Sanofi, Takeda, TiGenix and hold stock options in Intestinal Biotech Development. MA reports consulting for Douglas Pharmaceutical.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs

Maria Manuela Estevinho <http://orcid.org/0000-0001-7171-0139>

Shirley Cohen-Mekelburg <http://orcid.org/0000-0001-5058-5527>

Kristine Høgaard Allin <http://orcid.org/0000-0002-6880-5759>

Mathurin Fumery <http://orcid.org/0000-0002-2337-2902>

Jean-Frederic Colombel <http://orcid.org/0000-0001-6472-249X>

Manasi Agrawal <http://orcid.org/0000-0003-4729-1485>

REFERENCES

- Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease. *Nat Rev Gastroenterol Hepatol* 2021;18:56–66.
- Wang R, Li Z, Liu S, et al. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. *BMJ Open* 2023;13:e065186.
- Singh S, Qian AS, Nguyen NH, et al. Trends in U.S. Health Care Spending on Inflammatory Bowel Diseases, 1996–2016. *Inflamm Bowel Dis* 2022;28:364–72.
- Ananthakrishnan AN, Kaplan GG, Bernstein CN, et al. Lifestyle, behaviour, and environmental modification for the management of patients with inflammatory bowel diseases: an International Organization for Study of Inflammatory Bowel Diseases consensus. *Lancet Gastroenterol Hepatol* 2022;7:666–78.
- Ananthakrishnan AN, Bernstein CN, Iliopoulos D, et al. Environmental triggers in IBD: a review of progress and evidence. *Nat Rev Gastroenterol Hepatol* 2018;15:39–49.
- Pat Y, Yazici D, D'Avino P, et al. Recent advances in the epithelial barrier theory. *Int Immunol* 2024;36:211–22.
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:71.
- Thomas J, Kneale D, McKenzie J, et al. Chapter 2: determining the scope of the review and the questions it will address. In: Higgins J, Thomas J, Chandler J, eds. *Cochrane handbook for systematic reviews of interventions version 6.4*. 2023: 6. 4.
- von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Lancet* 2007;370:1453–7.
- Zhang QS. Environment Pollution Analysis on Smart Cities Using Wireless Sensor Networks. *SPEE* 2022;42:239–62.
- Abdulrazaq Y, Abdulsalam A, Rotimi AL, et al. *Classification, potential routes and risk of emerging pollutants/contaminant*. Rijeka: IntechOpen, 2020.
- Agrawal M, Midya V, Maroli A, et al. Per- and Poly-Fluoroalkyl Substances Exposure Is Associated With Later Occurrence of Inflammatory Bowel Disease. *Clin Gastroenterol Hepatol* 2024;22:1728–30.
- USEPA. Particulate matter (PM2.5) trends. 2023. Available: <https://www.epa.gov/air-trends/particulate-matter-pm25-trends> [Accessed 5 May 2024].
- Rodríguez-Lago I, Cabriada JL, Rodríguez A, et al. Environmental Exposure to Trace Elements and Heavy Metals Preceding the Clinical Onset of Inflammatory Bowel Disease. *Crohns Colitis 360* 2024;6:otae018.
- Bagherzadeh F, Karami Horstani M, Sadeghi M, et al. Influence of metal ions concentration in drinking water in the development of ulcerative colitis. *Int J Environ Sci Technol* 2022;19:3539–46.
- Nair N, Austin C, Curtin P, et al. Association Between Early-life Exposures and Inflammatory Bowel Diseases, Based on Analyses of Deciduous Teeth. *Gastroenterology* 2020;159:383–5.
- Dorofeyev A, Dorofeyeva A, Borysov A, et al. Gastrointestinal health: changes of intestinal mucosa and microbiota in patients with ulcerative colitis and irritable bowel syndrome from PM_{2.5}-polluted regions of Ukraine. *Environ Sci Pollut Res Int* 2023;30:7312–24.
- Riahi R, Abdi S, Ashtari S, et al. Evaluating the influence of environmental risk factors on inflammatory bowel diseases: a case-control study. *Gastroenterol Hepatol Bed Bench* 2023;16:307–18.
- Li FR, Wu KY, Fan WD, et al. Long-term exposure to air pollution and risk of incident inflammatory bowel disease among middle and old aged adults. *Ecotoxicol Environ Saf* 2022;242:113835.
- Opstelten JL, Beelen RMJ, Leenders M, et al. Exposure to Ambient Air Pollution and the Risk of Inflammatory Bowel Disease: a European Nested Case-Control Study. *Dig Dis Sci* 2016;61:2963–71.
- Kaplan GG, Hubbard J, Korzenik J, et al. The inflammatory bowel diseases and ambient air pollution: a novel association. *Am J Gastroenterol* 2010;105:2412–9.
- Lochhead P, Khalili H, Ananthakrishnan AN, et al. Plasma concentrations of perfluoroalkyl substances and risk of inflammatory bowel diseases in women: a nested case control analysis in the Nurses' Health Study cohorts. *Environ Res* 2022;207:112222.
- Fart F, Salihović S, McGlinchey A, et al. Perfluoroalkyl substances are increased in patients with late-onset ulcerative colitis and induce intestinal barrier defects *ex vivo* in murine intestinal tissue. *Scand J Gastroenterol* 2021;56:1286–95.
- Wallen A, Graff P, Bryngelsson IL, et al. Risks of developing ulcerative colitis and Crohn's disease in relation to silica dust exposure in Sweden: a case-control study. *BMJ Open* 2020;10:e034752.
- Ding S, Sun S, Ding R, et al. Association between exposure to air pollutants and the risk of inflammatory bowel diseases visits. *Environ Sci Pollut Res Int* 2022;29:17645–54.
- Adami G, Pontalmi M, Cattani G, et al. Association between long-term exposure to air pollution and immune-mediated diseases: a population-based cohort study. *RMD Open* 2022;8:e002055.
- Elten M, Benchimol EI, Fell DB, et al. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: a population-based cohort study. *Environ Int* 2020;138:105676.
- Steenland K, Kugathasan S, Barr DB. PFOA and ulcerative colitis. *Environ Res* 2018;165:317–21.
- Steenland K, Zhao L, Winquist A. A cohort incidence study of workers exposed to perfluoroctanoic acid (PFOA). *Occup Environ Med* 2015;72:373–80.
- Steenland K, Zhao L, Winquist A, et al. Ulcerative colitis and perfluoroctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. *Environ Health Perspect* 2013;121:900–5.
- Aamodt G, Bukholm G, Johnsen J, et al. The association between water supply and inflammatory bowel disease based on a 1990–1993 cohort study in southeastern Norway. *Am J Epidemiol* 2008;168:1065–72.
- Feathers A, Lovasi GS, Grigoryan Z, et al. Crohn's Disease Mortality and Ambient Air Pollution in New York City. *Inflamm Bowel Dis* 2023.
- Mauriz-Barreiro V, Barreiro-de Acosta M, Bastón-Rey I, et al. Radon exposure and inflammatory bowel disease in a radon prone area. *Rev Esp Enferm Dig* 2022;114:405–9.
- Ananthakrishnan AN, McGinley EL, Binion DG, et al. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. *Inflamm Bowel Dis* 2011;17:1138–45.
- Okafor PN, Dahlen A, Youssef M, et al. Environmental Pollutants Are Associated With Irritable Bowel Syndrome in a Commercially Insured Cohort of California Residents. *Clin Gastroenterol Hepatol* 2023;21:1617–26.
- Duan R, Wu Y, Wang M, et al. Association between short-term exposure to fine particulate pollution and outpatient visits for ulcerative colitis in Beijing, China: a time-series study. *Ecotoxicol Environ Saf* 2021;214:112116.
- Chen G, Huo X, Luo X, et al. E-waste polycyclic aromatic hydrocarbon (PAH) exposure leads to child gut-mucosal inflammation and adaptive immune response. *Environ Sci Pollut Res* 2021;28:53267–81.
- Xu Y, Li Y, Scott K, et al. Inflammatory bowel disease and biomarkers of gut inflammation and permeability in a community with high exposure to perfluoroalkyl substances through drinking water. *Environ Res* 2020;181:108923.
- Nejad P, Mard S, Larki S, et al. Role of Air Pollution in Inflammatory Bowel Disease Flares: a Retrospective Study. *Gov* 2016;20:261–7.
- Zhou S, Chai P, Dong X, et al. Drinking water quality and inflammatory bowel disease: a prospective cohort study. *Environ Sci Pollut Res* 2023;30:71171–83.
- Chen J, Dan L, Sun Y, et al. Ambient Air Pollution and Risk of Enterotomy, Gastrointestinal Cancer, and All-Cause Mortality among 4,708 Individuals with Inflammatory Bowel Disease: a Prospective Cohort Study. *Environ Health Perspect* 2023;131:77010.
- Chen D, Parks CG, Hofmann JN, et al. Pesticide use and inflammatory bowel disease in licensed pesticide applicators and spouses in the Agricultural Health Study. *Environ Res* 2024;249:118464.
- Wen J, Zhang J, Zhang H, et al. Large-scale genome-wide association studies reveal the genetic causal etiology between air pollutants and autoimmune diseases. *J Transl Med* 2024;22:392.
- Fu C, Wang Q, Chen Y, et al. Exploring the causal relationship between airborne particulate matter and ulcerative colitis: a two-sample mendelian randomization study. *PLoS ONE* 2024;19:e0300066.
- Arora M, Austin C, Sarrafpour B, et al. Determining prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels. *PLoS ONE* 2014;9:e97805.
- Jeong CH, Kwon HC, Kim DH, et al. Effects of Aluminum on the Integrity of the Intestinal Epithelium: an *In Vitro* and *In Vivo* Study. *Environ Health Perspect* 2020;128:17013.
- Chen X, Bi M, Yang J, et al. Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF- α /NF- κ B pathway in swine small intestine. *J Hazard Mater* 2022;421:126704.

48 Matsuda H, Nibe-Shirakihara Y, Tamura A, et al. Nickel particles are present in Crohn's disease tissue and exacerbate intestinal inflammation in IBD susceptible mice. *Biochem Biophys Res Commun* 2022;592:74–80.

49 Gokulan K, Williams K, Orr S, et al. Human Intestinal Tissue Explant Exposure to Silver Nanoparticles Reveals Sex Dependent Alterations in Inflammatory Responses and Epithelial Cell Permeability. *Int J Mol Sci* 2020;22:9.

50 Rodríguez-Viso P, Domene A, Vélez D, et al. Oral exposure to inorganic mercury or methylmercury elicits distinct pro-inflammatory and pro-oxidant intestinal responses in a mouse model system. *Food Chem Toxicol* 2023;177:113801.

51 Liu H, Qian K, Zhang S, et al. Lead exposure induces structural damage, digestive stress, immune response and microbiota dysbiosis in the intestine of silver carp (*Hypophthalmichthys molitrix*). *Comp Biochem Physiol Part C: toxicol Pharmacol* 2022;262:109464.

52 Xing C, Yang F, Lin Y, et al. Hexavalent Chromium Exposure Induces Intestinal Barrier Damage via Activation of the NF-κB Signaling Pathway and NLRP3 Inflammasome in Ducks. *Front Immunol* 2022;13:952639.

53 Calatayud M, Gimeno-Alcañiz JV, Vélez D, et al. Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells. *Toxicol Lett* 2014;224:40–6.

54 Xie D, Li Y, Liu Z, et al. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (*Pelteobagrus fulvidraco*). *Comp Biochem Physiol Part C: Toxicol Pharmacol* 2019;222:65–73.

55 Pineton de Chambrun G, Body-Malapel M, Frey-Wagner I, et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. *Muc Immunol* 2014;7:589–601.

56 Jiang Z, Mu W, Yang Y, et al. Cadmium exacerbates dextran sulfate sodium-induced chronic colitis and impairs intestinal barrier. *Sci Total Environ* 2020;744:140844.

57 Zhang L, Yang Z, Yang M, et al. Copper-induced oxidative stress, transcriptome changes, intestinal microbiota, and histopathology of common carp (*Cyprinus carpio*). *Ecotoxicol Environ Saf* 2022;246:114136.

58 Midya V, Agrawal M, Lane JM, et al. 2024 Association between Exposure to Metals during Pregnancy, Childhood Gut Microbiome, and Risk of Intestinal Inflammation in Late Childhood. *Env Health*.

59 Li Y, Pan M, Meng S, et al. The Effects of Zinc Oxide Nanoparticles on Antioxidation, Inflammation, Tight Junction Integrity, and Apoptosis in Heat-Stressed Bovine Intestinal Epithelial Cells In Vitro. *Biol Trace Elem Res* 2024;202:2042–51.

60 Li S, Yang C, Yi X, et al. Effects of Sub-chronic Lead Exposure on Essential Element Levels in Mice. *Biol Trace Elem Res* 2023;201:282–93.

61 Hantrakool S, Kumfu S, Chattipakorn SC, et al. Effects of Particulate Matter on Inflammation and Thrombosis: past Evidence for Future Prevention. *Int J Environ Res Public Health* 2022;19:8771.

62 Xie S, Zhang C, Zhao J, et al. Exposure to concentrated ambient PM_{2.5} (CAPM) induces intestinal disturbance via inflammation and alteration of gut microbiome. *Environ Int* 2022;161:107138.

63 Fitch MN, Phillipi D, Zhang Y, et al. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice. *Environ Res* 2020;181:108913.

64 Woody B, Schiavone ML, Pambianchi E, et al. Particulate Matter Decreases Intestinal Barrier-Associated Proteins Levels in 3D Human Intestinal Model. *Int J Environ Res Public Health* 2020;17:3234.

65 Li X, Cui J, Yang H, et al. Colonic Injuries Induced by Inhalational Exposure to Particulate-Matter Air Pollution. *Adv Sci (Weinh)* 2019;6:1900180.

66 Son YS, Son N, Yu WD, et al. Particulate matter 10 exposure affects intestinal functionality in both inflamed 2D intestinal epithelial cell and 3D intestinal organoid models. *Front Immunol* 2023;14:1168064.

67 Liu Y, Yu G, Zhang R, et al. Early life exposure to low-dose perfluorooctane sulfonate disturbs gut barrier homeostasis and increases the risk of intestinal inflammation in offspring. *Environ Pollut* 2023;329:121708.

68 Diaz OE, Sorini C, Morales RA, et al. Perfluorooctanesulfonic acid modulates barrier function and systemic T-cell homeostasis during intestinal inflammation. *Dis Model Mech* 2021;14.

69 Li F, Gong X, Zhou Y, et al. Integrated evidence of transcriptional, metabolic, and intestinal microbiota changes in *Ruditapes philippinarum* due to perfluorooctanoic acid-induced immunotoxicity. *Sci Total Environ* 2024;916:170341.

70 India-Aldana S, Yao M, Midya V, et al. PFAS Exposures and the Human Metabolome: a Systematic Review of Epidemiological Studies. *Curr Pollut Rep* 2023;9:510–68.

71 Liu J, Liu S, Huang Z, et al. Associations between the serum levels of PFOS/PFOA and IgG N-glycosylation in adult or children. *Environ Pollut* 2020;265:114285.

72 Pinho SS, Alves I, Gaifern J, et al. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. *Cell Mol Immunol* 2023;20:1101–13.

73 Agrawal M, Midya V, Picker M, et al. P104 Per- and poly-fluoroalkyl substances (PFAS) exposure in early life is associated with intestinal inflammation. *J Crohns Colitis* 2024;18:i386–7.

74 Xie S, Zhou A, Xu N, et al. Benzo[a]pyrene induces microbiome dysbiosis and inflammation in the intestinal tract of western mosquitofish (*Gambusia affinis*) and zebrafish (*Danio rerio*). *Fish Shellfish Immunol* 2020;105:24–34.

75 Zhou Y, Zhang M, Zhao X, et al. Ammonia exposure induced intestinal inflammation injury mediated by intestinal microbiota in broiler chickens via TLR4/TNF- α signaling pathway. *Ecotoxicol Environ Saf* 2021;226:112832.

76 Yang H, Sanidad KZ, Wang W, et al. Triclocarban exposure exaggerates colitis and colon tumorigenesis: roles of gut microbiota involved. *Gut Microbes* 2020;12:1690364.

77 Ghasemi-Niri SF, Maqbool F, Baeeri M, et al. Phosalone-induced inflammation and oxidative stress in the colon: evaluation and treatment. *World J Gastroenterol* 2016;22:4999–5011.

78 Joly Condette C, Khorsi-Cauet H, Morlière P, et al. Increased gut permeability and bacterial translocation after chronic chlorpyrifos exposure in rats. *PLOS ONE* 2014;9:e102217.

79 Xiu W, Ding W, Mou S, et al. Adverse effects of fenpropothrin on the intestine of common carp (*Cyprinus carpio* L) and the mechanism involved. *Pestic Biochem Physiol* 2024;199:105799.

80 Ma R, Sun T, Wang X, et al. Chronic exposure to low-dose deltamethrin can lead to colon tissue injury through PRDX1 inactivation-induced mitochondrial oxidative stress injury and gut microbial dysbiosis. *Ecotoxicol Environ Saf* 2023;264:115475.

81 Sanmarco LM, Chao CC, Wang YC, et al. Identification of environmental factors that promote intestinal inflammation. *Nature* 2022;611:801–9.

82 Lin C, Fu J, Liu L, et al. Disruption of intestinal structure, tight junction complex, immune response and microbiota after chronic exposure to copper in swamp eel (*Monopterus albus*). *Fish Shellfish Immunol* 2023;143:109182.

83 Ananthakrishnan AN, Khalili H, Song M, et al. Zinc intake and risk of Crohn's disease and ulcerative colitis: a prospective cohort study. *Int J Epidemiol* 2015;44:1995–2005.

84 Zhang L, Agrawal M, Ng SC, et al. Early-life exposures and the microbiome: implications for IBD prevention. *Gut* 2024;73:541–9.

85 Agrawal M, Hansen AV, Colombel J-F, et al. Association between early life exposure to agriculture, biodiversity, and green space and risk of inflammatory bowel disease: a population-based cohort study. *EClinMed* 2024;70:102514.

86 Agrawal M, Sabino J, Frias-Gomes C, et al. Early life exposures and the risk of inflammatory bowel disease: systematic review and meta-analyses. *EClinMed* 2021;36:100884.

87 Shah SC, Tarassishin L, Eisele C, et al. Breastfeeding Is Associated with Lower Likelihood of *Helicobacter Pylori* Colonization in Babies, Based on a Prospective USA Maternal-Infant Cohort. *Dig Dis Sci* 2022;67:5149–57.

88 Kim ES, Tarassishin L, Eisele C, et al. Longitudinal Changes in Fecal Calprotectin Levels Among Pregnant Women With and Without Inflammatory Bowel Disease and Their Babies. *Gastroenterology* 2021;160:1118–30.

89 Faye AS, Allin KH, Iversen AT, et al. Antibiotic use as a risk factor for inflammatory bowel disease across the ages: a population-based cohort study. *Gut* 2023;72:663–70.

90 Ho WC, Chou LW, Wang RY, et al. Association between Exposure to Ambient Air Pollution and the Risk of Rheumatoid Arthritis in Taiwan: a Population-Based Retrospective Cohort Study. *Int J Environ Res Public Health* 2022;19:7006.

91 Bline AP, DeWitt JC, Kwiatkowski CF, et al. Public Health Risks of PFAS-Related Immunotoxicity Are Real. *Curr Environ Health Rep* 2024;11:118–27.

92 Petit P, Leroyer A, Chamot S, et al. Farming activities and risk of inflammatory bowel disease: a French nationwide population-based cohort study. *J Crohns Colitis* 2024.

93 Curtin P, Austin C, Curtin A, et al. Dysregulated biodynamics in metabolic attractor systems precede the emergence of amyotrophic lateral sclerosis. *PLoS Comput Biol* 2020;16:e1007773.

94 Helbig KL, Nothnagel M, Hampe J, et al. A case-only study of gene-environment interaction between genetic susceptibility variants in NOD2 and cigarette smoking in Crohn's disease aetiology. *BMC Med Genet* 2012;13:14.

95 Wang M-H, Fiocchi C, Zhu X, et al. Gene-gene and gene-environment interactions in ulcerative colitis. *Hum Genet* 2014;133:547–58.

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Not applicable
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	4
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	5
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	6
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	6
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	6-7
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	6-7
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	7
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	7
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	7
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	7
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Not applicable
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Not applicable
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Not applicable
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Not applicable
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Not applicable
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Not applicable
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Not applicable
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Not applicable
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Not applicable

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	9
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	9
Study characteristics	17	Cite each included study and present its characteristics.	9
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	9-13, Supplementary table 1
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Not applicable
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	9-13
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Not applicable
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Not applicable
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Not applicable
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Not applicable
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Not applicable
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	16-20
	23b	Discuss any limitations of the evidence included in the review.	19-20
	23c	Discuss any limitations of the review processes used.	19-20
	23d	Discuss implications of the results for practice, policy, and future research.	20
OTHER INFORMATION			
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	6
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	6
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	6
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	3
Competing interests	26	Declare any competing interests of review authors.	2-3
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	6

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71. doi: 10.1136/bmj.n71

Supplementary Table 1. Summary of the evidence from human studies on the association between inflammatory bowel disease and the different categories of environmental pollutants.

HEAVY METALS OR TRANSITION METALS									
Citation details	Study type	Study population/unit	Follow-up	Exposure details	Tools used to assess exposure	Outcomes assessed	Confounding measured	Exposure response	Results
Rodríguez-Lago et al., 2024 ¹⁵	Case-control study	Incident cases of preclinical IBD (UC n=3, CD n=3) or healthy controls (n=13)	No	Al, Sb, As, Ba, Be, Bi, Cd, Pb, Hg, Pt, Tl, Th, U, Ni, Ag, Sn and minerals (Ca, Mg, Na, K, Cu, Zn, Mn, Cr, V, Mo, B, I, Li, P, Se, Sr, S, Co, Fe, Ge, Rb, Zr)	Hair samples	Concentrations in IBD versus healthy controls	None	None	Significantly higher levels of Na, K, and B among cases compared to controls, while lower levels of Zn, U, Cu, and Ge were observed.
Zhou et al., 2023 ⁴¹	Prospective cohort study	Incident cases of IBD (n=46), overall cohort n=22,824	5 years (mean)	Hg, Fe, Mn, Cu, Al, Zn, Cr, Cd, Se, F, SO ₄ , Cl, and disinfectants	Drinking water quality (region level)	Hazard ratio for IBD	Age, sex, education, BMI, income, smoking, alcohol and tea consumption, diet	Concentration-response relationship	Exposure to Mn, Hg, Se, SO ₄ , Cl, and NO ₃ -N were associated with a greater risk of IBD, with aHR ranging from 1.26 (95%CI 1.18-1.34) to 1.66 (95%CI 1.32-2.09). On the other hand, Zn and F were connected to a lower risk of IBD.
Bagherzadeh et al., 2021 ¹⁶	Case-control study	Patients with UC (n=35), healthy controls (n=35)	No	Pb, As, Ni, Cu, Zn, Fe, and Se	Colon biopsy samples, drinking water (individual level)	OR for UC, concentrations of metals	None	None	Exposure to Pb (OR 1.02, p=0.001), As (OR 1.51, p<0.001), Cu (OR 1.011, p=0.021), and Fe (OR 1.02, p=0.001) was associated with occurrence of UC; the concentrations of Zn and Ni were lower in UC patients than in controls.
Nair et al., 2020 ¹⁷	Case-control study	Patients with IBD (n=12; 7 with CD, 5 with UC) and controls (n=16)	No	Pb, Cu, Zn, and Cr	Deciduous teeth of patients who developed IBD	Heavy metal uptake in baby teeth	Sex	None	Significant differences in Pb, Cu, Zn, and Cr uptake in the baby teeth of individuals who developed IBD, in a time-dependent manner.
Aamodt et al., 2008 ³²	Retrospective cohort study (population-based data)	762 IBD patients (CD n=185, UC n=435, not classified n=142)	5 years	Fe, Al, acidity, color, turbidity, and coliform bacteria	Drinking water quality (district level)	Relative risk of IBD	Urbanization, age at diagnosis, gender	None	The aRR of IBD increased by 17% when the Fe content in the water increased by 0.1 mg/L (UC and CD); no association for other factors.
AIR POLLUTANTS									
Citation details	Study type	Study population/unit	Follow-up	Exposure details	Tools used to assess exposure	Outcomes assessed	Confounding measured	Exposure response	Results
Fu et al., 2024 ⁴⁵	Genome-wide association study	2,251 UC patients, 210,300 controls	No	Air pollution	SNP associated with PM _{2.5} , PM _{2.5-10} , PM ₁₀ (LUR models)	Incidence of UC	Mendelian randomization	None	A positive association was identified between PM _{2.5} levels and the risk of UC (OR 3.6, 95%CI 1.2-11.3, p=0.026); however, no causal link was found between PM _{2.5-10} and PM ₁₀ levels and UC.
Wen et al., 2024 ⁴⁴	Genome-wide association	6,968 UC cases, 5,956 CD cases,	No	Air pollution	SNP associated with PM ₁₀ , PM _{2.5} , NO ₂ , and NOX	Incidence of UC and CD	Mendelian randomization, (BMI, alcohol,	None	The association between PM _{2.5} and increased risk for UC (aOR 2.50, 95%CI 1.27-4.91, p=0.008) was the only significant result after accounting for

	study	21,770 controls		(LUR models, region level)	smoking, income, air pollutants)		other air pollutants.		
Chen et al., 2023 ⁴²	Prospective cohort study	4,708 individuals with IBD (CD n= 1,485, UC n=3,233)	12 years (mean)	Air pollution	Annual average concentrations of PM _{2.5} , PM _{2.5-10} , PM ₁₀ , NO ₂ and NO _x (LUR model)	Clinical outcomes in IBD patients (enterotomy, gastrointestinal cancer, and all-cause mortality)	Age, sex, ethnicity, income, smoking, education, BMI, physical activity, diet, alcohol consumption, medication	Association between increased exposure and outcomes	Increase in exposure to PM _{2.5} by one IQR associated to increased risk of enterotomy (aHR=1.16, 95%CI 1.00-1.34, p=0.043). Each IQR increase in exposure to NO _x (aHR=1.10, 95%CI 1.01-1.20, p=0.016), NO ₂ (aHR=1.16, 95%CI 1.03-1.29, p=0.010), PM ₁₀ (aHR=1.15; 95%CI 1.03-1.30, p=0.015), and PM _{2.5} (aHR=1.14, 95%CI 1.02-1.28, p=0.019) was associated with a higher risk of all-cause mortality.
Feathers et al., 2023 ³³	Ecological analysis	378 individuals who died because of CD-related causes	No	Air pollution	Exposure to NO, NO ₂ , SO ₂ , O ₃ , and PM _{2.5} (survey, zip code-level)	CD-related death	Economic status, ethnicity	None	Greater risk of CD-related death observed in zip codes with higher SO ₂ levels (aIRR=1.16, 95%CI 1.06-1.27); however, the risk was not linked to the levels of NO, NO ₂ , or fine particulate matter.
Dorofeyev et al., 2023 ¹⁸	Case-control study	100 patients with UC from highly (HPRs) and low PM _{2.5} -polluted regions	No	High versus low air pollution (PM _{2.5})	Exposure to PM _{2.5} (region level)	Morphological and functional changes in mucosa and microbiome	None	None	Patients from HPRs presented significant changes in mucus; the level of MUC2 was significantly lower patients with UC from HPRs. In patients with UC from HPRs, a decrease in Bacteroidetes and an increase in Proteobacteria was identified.
Riahi et al., 2023 ¹⁹	Case-control study	IBD patients (n=100) and sex-matched controls (n=100)	No	Air and water pollution	Survey	OR for IBD	None	None	Individuals exposed to pollutants (yes/no) did not have higher odds of developing IBD (OR 1.17, 95%CI 0.62-2.21 for air pollution, OR 0.32, 95%CI 0.06-1.62 for water pollution)
Ding et al., 2022 ²⁶	Retrospective cohort study	Patients with UC (n=313) and CD (n=573) with IBD-related admissions	No	Air pollution	PM ₁₀ , PM _{2.5} , O ₃ , CO, NO ₂ , SO ₂ concentrations (region level)	Risk of IBD-related daily hospital admissions	Meteorological factors	None	PM _{2.5} , O ₃ , and CO exposure significantly increased the risk of daily admissions for IBD, mainly in warm seasons and for UC patients.
Li et al., 2022 ²⁰	Nested case-control study (population-based cohort)	Incident cases of UC (n=1,872) and CD (n=865), healthy controls (n=452,628)	11.7 year (median)	Air pollution and residential exposure	PM _{2.5} , PM _{2.5-10} , PM ₁₀ , NO ₂ and NO _x (LUR model)	Incidence of IBD	Age, sex, ethnicity, income, BMI, smoking, diet, alcohol, sedentary time, aspirin use, other diseases	Exposure over time	aHRs of UC associated with each one IQR increase in PM _{2.5} , PM _{2.5-10} , PM ₁₀ , NO ₂ , and NO _x were 1.06 (95%CI 1.01-1.12), 1.03 (0.99-1.08), 1.09 (1.03-1.16), 1.12 (1.07-1.19), and 1.07 (1.02-1.12), respectively. The associations between air pollutants and the risk of CD were null.
Adami et al., 2022 ²⁷	Retrospective cohort study (population-based data)	1,250 individuals with IBD, overall cohort N=81,363	No	Air pollution	PM ₁₀ and PM _{2.5} concentrations (region level)	Prevalence of IBD	Scholarly, climate, socioeconomic status, smoking	None	Exposure to PM _{2.5} was associated with an increased risk of IBD (aOR 1.21, 95%CI 1.03-1.42); exposure to PM ₁₀ did not significantly increase the risk.
Mauriz-Barreiro et al., 2021 ³⁴	Ecological analysis	Incident cases of IBD (UC n=63, CD n=29, unclassified	NR	Residential radon concentration	Radon concentration (municipal level)	Incidence of IBD	Sex	None	No correlation between radon levels and the cumulative incidence of IBD (Spearman's rho = 0.13, p-value 0.50).

n=4)									
Duan et al., 2021 ³⁷	Cross-sectional study	Outpatient visits for UC (n= 84,000)	No	Short-term exposure to fine particulate matter (PM2.5)	Daily PM _{2.5} concentrations (region level)	UC-related outpatient visits	Meteorological factors, day of the week, calendar time	Concentration-response relationship	A 10 µg/m ³ increase in PM _{2.5} concentration corresponded to a 0.32% increase in UC outpatient visits (95% CI, 0.05–0.58%; p=0.019) on that day; a concentration-response association was identified.
Elten et al., 2020 ²⁸	Retrospective cohort study (population-based)	Incident cases of IBD (CD n=1,375, UC n=899, unclassified n=218); non-IBD (n=2,218,789)	12 years (mean)	Maternal and early-life exposures	NO ₂ , PM _{2.5} , O ₃ and O _x - weekly in pregnancy, annual up to 18 years-old (zip-code level)	Hazard ratio for pediatric-onset IBD	Sex, rurality of residence, maternal IBD, neighborhood income	None	Significant positive associations for second-trimester exposure to O _x (HR 1.21, 95%CI 1.03-1.42) and childhood exposure to O _x (HR 1.08, 95%CI 1.01-1.16); slightly more for UC. First-trimester exposure to NO ₂ was associated with an increased risk of IBD only among those living in rural areas.
Opstelten et al., 2016 ²¹	Nested case-control study	Incident cases of CD (n=38), UC (n=104) and controls (n=568)	At least 5 years	Air pollution and residential exposure	Air pollution (region level), residential exposure (LUR for PM ₁₀ , PM _{2.5} , PM _{coarse} , NO _x)	OR for IBD	Age, gender, diet, smoking, physical activity, educational level	None	Individuals with IBD were less likely to have higher exposure levels of PM _{2.5} and PM ₁₀ , with aOR of 0.24 (95%CI 0.07-0.81) per 5 lg/m ³ and 0.25 (95%CI 0.08-0.78) per 10 lg/m ³ . A higher traffic load was positively associated with UC (aOR 1.58, 95%CI 1.00-2.49).
Nejad et al., 2016 ⁴⁰	Cross-sectional study	IBD inpatients (UC n=37, CD n=29)	10 months	Air pollution	Average concentration of SO ₂ , CO, NO ₂ and O ₃ (region level)	Number and average duration of IBD-related hospitalizations	None	None	Non-significant positive association between CO levels and the number and duration of admissions due to UC (p=0.13 and p=0.08, correlation coefficients of 0.196 and 0.251, respectively). There was an inverse correlation between concentration of O ₃ and number and duration of admissions due to CD flare (p=0.016 and 0.006, correlation coefficient -0.338 and -0.413, respectively).
Kaplan et al., 2010 ²²	Nested case-control study	Incident cases of CD (n=367) or UC (n=591) and age- and sex-matched controls	No	Residential exposure to air pollution	Quintiles of concentration of NO ₂ , SO ₂ , and PM ₁₀ (region level)	OR for IBD	Smoking, socioeconomic status, NSAIDs, appendectomy	Concentration-response relationship	Individuals ≤23 years were more likely to be diagnosed with CD if they lived in regions with NO ₂ concentrations within the upper three quintiles (aOR=2.31, 95%CI 1.25-4.28). UC patients ≤25 years (OR=2.00, 95%CI 1.08-3.72) were more likely to live in regions of higher SO ₂ (no dose response effect).
Ananthakrishnan et al., 2011 ³⁵	Ecological analysis	IBD inpatients (UC n=1,353, CD n=2,537)	NR	Air pollution	Densities of volatile organic compounds, CO, NO, SO ₂ and PM _{2.5} (region level)	IBD-related hospitalizations	Farmland area, socioeconomic status, urbanization, household size	Concentration-response relationship	Total pollutant emissions correlated significantly with IBD hospitalizations (Pearson's rho 0.28, p=0.02). The iRR was also significant for individual pollutants (CO, NO, SO ₂ , and PM _{2.5}), ranging from 1.03, 95%CI 1.01-1.05 (for CO) to 1.52, 95%CI 1.41-1.63 (volatile compounds)
INDUSTRIAL COMPOUNDS AND ORGANIC POLLUTANTS									
Citation details	Study type	Study population/unit	Follow-up	Exposure details	Tools used to assess exposure	Outcomes assessed	Confounders measured	Exposure response	Results
Agrawal et al., 2023 ¹²	Nested case-control study	Individuals with CD (n=25), UC	6-10 years prior	Exposure to perfluoroalkyl	Serum concentrations	OR for IBD	Age at diagnosis, different batches	Assessment at multiple	A higher concentration of fluorinated compounds, including PFAS, was linked to an increased risk of

		(n=25), age-, sex, and race-matched controls (n=25)	diagnosis	substances	(pre-diagnostic) of a mixture of nine PFAS (comprising PFOA, PFOS, PFNA, PFDA, PFHxS, among others)	of chemical exposure analysis	time points	IBD. For each one-unit increase, the aOR was 2.13 (95%CI 1.33–3.41) for CD and 1.76 (95%CI 1.15–2.68) for UC. This pattern was consistent across four different time points, up to 10 years before diagnosis.
Lochhead et al., 2022 ²³	Nested case-control study	Incident cases of CD (n = 73), UC (n = 80) and matched controls	No	Exposure to perfluoroalkyl substances	Serum concentrations of PFAS (PFOA, PFHxS, PFNA, PFDA, total PFOS)	Incidence of IBD	Age, hormone status, BMI, smoking, parity, physical activity, diet, housing	Concentration-response relationship
Okafor et al., 2022 ³⁶	Ecological analysis	Patients with UC (n=9,797) and CD (n=5,734), overall cohort n=2,885,171	NR	Exposure to several environmental pollutants	O ₃ , PM2.5 diesel, drinking water contaminants, pesticides, toxic releases from industrial facilities, traffic (zip-code level)	Incidence of IBD (zip-code level)	Gender, race, ethnicity, age, income, work and insurance, education, housing, food	Inverse associations between plasma concentrations of three PFAS (PFOA, PFOS, and PFDA) and risk of CD (p≤0.012 for a standard deviation increase in log ₁₀ PFAS). No correlation with the risk of UC.
Chen et al., 2021 ³⁸	Cross-sectional study	Healthy children exposed (n=119) and non-exposed (n=113) to waste polycyclic aromatic hydrocarbon (PAH)	No	Exposure to PAH from electronic waste	Measurement of eleven urinary PAH metabolites	B lymphocyte phenotype (serum), intestinal mucosal immunity, diarrhea	Dwelling environment, children's living habits, family history, income, parental educational level	E-waste-exposed children had higher OH-PAH concentrations, along with elevated sialyl Lewis A levels, increased counts of lymphocytes and monocytes, a decreased percentage of CD4 ⁺ T cells in the serum, and an elevated risk of diarrhea (OR = 2.21). PAHs affected the intestinal epithelium and led to M cell transformation.
Fart et al., 2021 ²⁴	Case-control study	Patients with UC (n=20) and CD (n=20) diagnosed after 55 years-old and age- and sex-matched controls	No	Exposure to perfluoroalkyl substances	Perfluoroalkyl substances (PFHpA, PFHxS, PFOA, PFNA, PFOS, PFDA, PFUnDA, PFTrDA, total PFAS)	Serum concentrations in CD and UC versus healthy controls	Disease location	Serum PFAS levels, particularly PFOS and PFOA, are significantly increased in patients with UC compared to healthy controls and patients with CD (p<0.05).
Xu et al, 2020 ³⁹	Cross-sectional study	1,284 patients with IBD, 63,074 (overall cohort) from a highly exposed population	No	Exposure to perfluoroalkyl substances in a highly exposed population	Yearly exposure to contaminated drinking water (zip-code level)	Hazard ratio for IBD, concentrations of fecal zonulin and calprotectin	Educational level	Association between PFAS exposure and fecal zonulin and calprotectin
Wallden et al., 2020 ²⁵	Nested case-control study	IBD patients (UC n=19,830,	No	Occupational exposure to silica	Silica exposure (job exposure)	Incidence of IBD	Duration of exposure, sex	Risk as a function of
								The prevalence of UC was significantly higher in men exposed to silica dust (OR 1.13, 95%CI

		CD n=10,261) and 60,182 controls matched for age, sex and county	dust	matrix)		the duration of exposure	1.06-1.21), particularly in individuals with over 5 years exposure. The prevalence of CD was significantly increased among exposed women (OR 1.29, 95%CI 1.01-1.65).		
Steenland et al., 2018 ²⁹	Retrospective cohort study	Patients with UC (n=114), CD (n=60) or controls (n=75)	No	Exposure to perfluoroalkyl substances	Serum levels of PFOA, PFOS, PFHxS, PFNA	Serum concentrations in CD and UC versus controls	Age, gender, race, year of sample		
Steenland et al., 2015 ³⁰	Retrospective cohort study	3,713 individuals working in the DuPont plant	NR	PFOA exposure	PFOA serum levels (job-exposure matrix); non-occupational exposure (questionnaire)	Incidence of UC	Gender, race, education, BMI smoking and alcohol		
Steenland et al., 2013 ³¹	Retrospective cohort study (highly exposed population); prospective analysis	Incident cases of CD (n=96), UC (n=151); overall cohort n=32,254	29 years (median)	PFOA exposure	PFOA exposure (estimated serum levels based on DuPont emissions, residential, work history)	Incidence of IBD	Age, sex, ethnicity, smoking, BMI, alcohol consumption		
PESTICIDES									
Citation details	Study type	Study population/unit	Follow-up	Exposure details	Tools used to assess exposure	Outcomes assessed	Confounding measured	Exposure response	Results
Chen et al., 2024 ⁴³	Prospective cohort study	IBD patients (n=454) among private pesticide applicators and their spouses (n=68,480)	18 years (median)	Exposure to pesticides	Questionnaire (at baseline and follow-up on the use of 50 specific pesticides)	Hazard ratio for IBD	Age, sex, race, ethnicity, education, state of residence, smoking, contact with animals	Intensity-weighted lifetime pesticide use	Among OC insecticides, dieldrin had an aHR of 1.59 (95%CI 1.03-2.44), DDT had an aHR of 1.47 (95%CI 1.03-2.08), and toxaphene had an aHR of 1.56 (95% CI 1.05-2.32). Among OP insecticides, phorate had an aHR of 1.39 (95%CI 1.00-1.92), and terbufos of 1.53 (95%CI 1.19-1.96). Herbicides with significant aHRs included alachlor (1.39, 95% CI 1.02-1.91), metolachlor (1.55, 95% CI 1.13-2.12), 2,4,5-T (1.43, 95% CI 1.00-2.03), and atrazine (1.46, 95% CI 1.00-2.13); no clear exposure-response trend.

Adjusted odds ratio (aOR), adjusted rate ratio (aRR), aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), body mass index (BMI), boron (B), cadmium (Cd), calcium (Ca), chlorine (Cl), chromium (Cr), cobalt (Co), copper (Cu), Crohn's disease (CD), fluorine (F), germanium (Ge), incidence rate ratio (IRR), interquartile range (IQR), iodine (I), iron (Fe), land use regression (LUR), lead (Pb), lithium (Li), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), nitrate nitrogen (NO₃-N), nitric oxide (NO), nitrogen dioxide (NO₂), nitrogen oxides (NO_x), odds ratio (OR), organochlorine (OC),

organophosphates (OP), ozone (O_3), particulate matter with a diameter between 2.5 and 10 micrometers ($PM_{2.5-10}$), particulate matter with 10 micrometers or less (PM_{10}), particulate matter with 2.5 micrometers or less ($PM_{2.5}$), per- and polyfluoroalkyl substances (PFAS), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorotridecanoic acid (PFTDA), perfluoroundecanoic acid (PFUnDA), phosphorus (P), platinum (Pt), potassium (K), rubidium (Rb), selenium (Se), silver (Ag), single nucleotide polymorphisms (SNP), sodium (Na), strontium (Sr), sulfur (S), sulfur dioxide (SO_2), sulfur tetraoxide (SO_4), thallium (Tl), thorium (Th), tin (Sn), titanium (Ti), ulcerative colitis (UC), uranium (U), vanadium (V), zinc (Zn), zirconium (Zr).

Supplementary Table 2. Assessment of the reporting quality of the studies included in the systematic review (n=32).